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Thetremendoussuccessesin rocketrywhichmadepossibleflightsintospace
havegreatlyenhancedtheSovietpublic'sinterestin theuniverse.

Inthisbookaseriesof questions are considered: what is the universe; what

will man encounter when he penetrates it; what velocities would be required; what

should be the trajectories and the most advantageous times for flights to the moon, to

other planets of the solar system, and to the nearest stars; what means can be used to

determine the position of a spacecraft traveling in space.

The book is well illustrated. It reflects the latest Soviet and foreign achievements

in the field of astronautics and astronomy.

The book is intended for a wide circle of readers interested in questions related

to the conquest of space.



PREFACE

The beginning of the second half of the twentieth century has been marked

by great developments in science and technology. The penetration into the

depth of the nucleus, which was crowned by the realization of controlled

nuclear reactions, on the one hand, and the exploration of space on the

other, are perhaps mankind's most important achievements in this period.

Great interest in many problems related to the universe has been aroused

in a wide circle of the Soviet public, and especially among the youth. Indeed,

can one remain indifferent to the stories of heroic countrymen, hero-

cosmonauts, who have made these flights into space? Is it possible to read

without excitement even the miserly brief lines of newspaper announcements

of flights by artificial satellites and space rockets, of the unprecedented

scientific experiments in space and of the outstanding scientific discoveries
that have been made?

Space travel has always been a subject of special popular interest. A

proof of this is the publication of so many works of science fiction. Real

accomplishments have now come to replace fantasy. Man has penetrated

into the near cosmos, and automatic interplanetary stations with numerous
instruments have been launched from the earth to the moon and to the near-

est planets --Venus and Mars.

In his eternal aspiration to know the secrets of the universe, man is not

satisfied with the results so far achieved. Piloted spacecraft will fly to

the moon and to neighboring planets, and, perhaps within the lifetime of the

present generation, spaceships from the earth will be sent to the remote

planets of the solar system and even beyond its boundaries.

However, the flight of man even to the nearest celestial body -- the

moon -- requires the solution of very complicated scientific and technological

problems and careful preparation.

In a talk with the delegates of the Third World Convention of

Journalists on 25 October, 1963, N.S.Khrushchev answereda question on the

possibility of a flight by Soviet cosmonauts to the moon as follows:

"At present we are not planning flights of cosmonauts to the moon.

Soviet scientists are working on this question, studying it as a scientific

problem, and conducting the necessary investigations. I have read the

report that the Americans want to land a man on the moon in 1970... We

do not wish to compete in the sending of men to the moon without careful

preparation; it is clear that no good would come out of a competition of that

kind, which, on the contrary, would be harmful, since it could result in

the loss of human lives... Before man can make a successful flight to the

moon much work and sound preparation will be required."

In connection with the huge successes in astronautics recently achieved

in the USSR and abroad, a large number of special articles and popular

essays have appeared which analyze the results obtained and consider the



immediateandlong-termprospectsfor man'spenetrationinto thedepths
latest

Methodsof solvingthemostimportantproblemsof cosmicnavigation
are describedin anumberof recentlypublishedworks. Amongthemone
shouldparticularlynotetheworksof AleksandrovandFedorov[2[*,

Seleznev ]29], Levantovskii ]19], and Erike ]41], to which the author refers

readers who are interested in problems of space navigation and who wish

to study this new highly-interesting field of science in greater detail.

This book is designed for those first being introduced into this subject.

In it the author has endeavoured to consider the various aspects of navi-

gation, and to show how the fundamental questions involved in the navigation

of space vehicles have been solved. However, it is not a study of space

navigation problems and not a textbook; the author has therefore tried to

present his material as simply as possible. It remains for the reader to

judge how far he has succeeded in these aims.

The book is intended for a wide circle of readers interested in the latest

achievements in the conquest of space, and particularly for young people

eager for knowledge, and if the reader finds in this work useful information,

if his reading arouses in him a lively interest in the questions discussed,
the author will consider his task fulfilled.

The author takes this opportunity to express his profound thanks to

Engineer-Colonel V. P. Seleznev, Doctor of Technical Sciences, who made a

number of valuable comments and suggestions which were extremely

helpful in the preparation of the manuscript.

Numbers in obliqiw brackets relate to the bibliographical references at tile end of the book.

vi



INTRODUCTION

On 4 October, 1957, inthe USSR, for the first time in man's history an

artificial earth satellite was successfully launched into orbit. Man had

created an artifical moon; a velocity had been attained which made it

possible to realize prolonged flights in space.

We have already become accustomed to the vigorous tempo of modern

scientific and technological developments. We perceived the progress of

aviation and the rise in the velocity of airplanes as usual phenomena, but

this event profoundly excited us. Indeed, for the first time in the history

of mankind, a velocity had been attained (over 28,000km/hr:) which exceeds

the velocity of modern jet planes by a factor of more than 10. A terrestrial

body created by man's hands reached a height of about 1000km. The dream

of reaching space had been realized by the Soviet people.

The 20th century is the century of electricity, atomic energy, cyber-

netics, computers, automation, and new plastic materials. Obviously, it

is not less justified to call it the century of the conquest of space, the

century of man's escape beyond the boundaries of the "air ocean" -- the

atmosphere of the earth. This is confirmed by the remarkable achieve-

ments in the conquest of space and the unparalleled tempo of the develop-

ment of astronautics --the science and practice of flights in space.

On 3 November, 1957, the second artificial earth satellite was launched

into orbit by the USSR. The USA, the foreign country leading in

scientific and technological developments, put its first artificial earth

satellite -- "Explorer I" -- into orbit only on 31 January, 1958.

With the launching of the artificial earth satellites there arose the

possibility of direct experimental investigation of the upper layers of the

atmosphere and of outer space. Astronomy, geophysics, meteorology,

and other sciences received a new, extremely powerful instrument of

research. Even the first launchings led to outstanding scientific discoveries.

The radiation belts of the earth were discovered by direct experiment, the

values of the parameters of the upper layers of the earth's atmosphere were

determined and extensive investigations on the earth's magnetic field were

carried out. Soviet, and later also American cosmonauts demonstrated

the possibility of prolonged human flight in outer space under conditions of

weightlessness.

The launchings in 1957-1958 of the Soviet earth satellites (sputniks) made

it possible to accumulate the necessary material for flights deeper into

space. On 2 January, 1959, a Soviet rocket was launched in the direction

of the moon. In this case the second escape velocity -- the minimum

velocity necessary to get free of the gravitational field of the earth -- was

attained. On 12 September, 1959, a second rocket to the moon was

successfully launched, and on 14 September at 0hr 02 rain24 sec Moscow



time it reached the surface of the moon. For the first time in history a

flight had been made from the earth to another celestial body. On 4 October, .

1959, the third Soviet cosmic rocket was launched to the moon, and unique

photographs of the part of the lunar surface which is not visible from the

earth were obtained. These made it possible to prepare an atlas of the

moon and a lunar globe.

While 1959 can be called the year of Soviet lunar flights, 1961 can be

called the year of the first manned space flights and the first interplanetary

flights. The dates 12 April and 6 August, and the names Yu. A. Gagarin

and G. S. Titov will forever be remembered in the history of mankind.

People will never forget the feat of Soviet cosmonauts, the first to pave the

way to the stars. On 12 February, 1961, for the first time in history, a

Soviet automatic interplanetary station was launched to Venus.

On 20 February and 24 May, 1962, the American astronauts J. Glenn

and S. Carpenter made their orbital flights. This was followed by a new

achievement of the Soviet people, an oustanding success of Soviet science

and technology -- the orbital flight of several days of the two cosmonauts

A. G. Nikolaev and P. R. Popovich in August 1962; then the 1 November

launching of the automatic interplanetary station "Mars I" --the next

attempt to penetrate into the depths of the solar system. The "multi-day"

double flight in the summer of 1963 in the manned satellites "Vostok V"

and "Vostok VI" of V. F. Bykovskii and of the first woman cosmonaut

V. V. Tereshkova -- a new example of heroism and courage -- was a further

outstanding success of Soviet science and technology. The Soviet launching

of the maneuverable spacecraft "Polet I" on 1 November, 1963, opened a

new page in the conquest of space.

Man's indomitable will, supported by the greatest achievements of his

mind, will every day penetrate further and further beyond the limits of the

earth's atmosphere.

The science dealing with the study of the problems of interplanetary

space flights is called astronautics. It includes a whole series of indepen-

dent scientific disciplines. A constituent part of astronautics is the science

which can be called space navigation. This science has not yet been

definitively formulated. The scope of problems which have to be studied

has not yet been defined, its purpose and problems are not yet clearly

delineated. However, this science is an essential and important one,

particularly with the beginning of flights into the depths of the universe.

It would seem that the fundamental problems to be considered by this

science will be those connected with the choice of the most advantageous

flight trajectories of spaceships, as well as the problems connected with

the guidance of spaceships along their prescribed trajectories. The

solution of these questions requires first of all a study of the universe.

Astronauts, spacecraft captains, and pilots of future spaceships will need

to know the navigational structure of that part of the universe in which they

have to fly their interplanetary ships.

Like seamen and land travelers studying geography, astronauts should

have a working knowledge of cosmology -- one of the branches of astronomy
which deals with the structural regularities of the universe -- and some other

other branches of astronomy. In fact, there will be take-off and arrival

points for spaceships not only on the earth, but also on other planets and

celestial bodies. The trajectories of these ships will pass through gravita-

tional fields of other celestial bodies and therefore the form and parameters



of thetrajectoriesof the spaceshipswill bedeterminedbythephysical
characteristicsof thosecelestialbodies,primarily their masses. The

choice of the safest path for a spaceship also requires the study of the

position of meteor streams and dangerous zones of intense cosmic radiation.

The solution of a very important problem of navigation -- determination

of the position of the spacecraft in space -- would be impossible without

knowledge of such subjects as the dimensions of celestial bodies, their

apparent brightness, their relative position and so on.

Finally, the cosmic traveler will need to know what to expect on arrival

at the celestial body to which he is heading; what his weight will be there,

i.e., what the gravitational acceleration on the surface of the celestial body

is; what kind of atmosphere the celestial body has; the condition and tem-

perature of its surface.

This is far from being a complete list of the most important problems in

the field of cosmology and other branches of astronomy, which astronauts

must get acquainted with when planning to fly to other planets, to other

worlds. Accordingly, the first chapter of this book gives a short description

of space and of the nearest celestial bodies; the second chapter deals with

the question of orbits and trajectories for reaching the nearest celestial

bodies and gives a comparative evaluation of them; and in the third chapter

various possible methods and devices for resolving the principle problems

as well as some of the subsidiary questions involved in the navigation of

interplanetary ships and low-orbit spacecraft are described.



Chapter I

THE LIMITLESS EXPANSE OF THE UNIVERSE

§l. Constellations and Stars

On a clear night we can see a majestic picture of the starry firmament.

It is so familiar that we no longer admire its beauties or even pay attention

to it at all. However, one need only look once more at the stars and

constellations and compare the colors of some of _he brightest stars, to

realize their unique beauty. On a particularly dark night, far from the city

or large populated areas an even more majestic sight lies before one's eyes.

The large stars then seem quite close and beyond them a multitude of tiny

stars form what appears to be a latticework screen.

This view approximates that seen from a spaceship, except for one

feature of the astronaut's view that is unavailable to a terrestrial observer:

the dazzling white-hot sun seen against a background of black sky and bright

stars.

From the most ancient times the stars have served as a reliable means

of guiding navigators; it was by the stars that the course of the ship and its

position were determined. Even today, observations of the stars are widely

used in marine and aerial navigation. It can be assumed that in navigation

of spaceships, methods based on the measurement of the positions of the

stars will also find a wide application.

Observation of the starry firmament shows us that the brightest stars

form groups of characteristic, easily remembered shapes. For example,

in midwinter, soon after nightfall we can see near the southern part of the

horizon a group of bright stars forming a trapezoid in the center of which

is seen a line of three stars of almost equal brightness.

These star groups were called constellations by the ancient civilized

peoples. Ptolemy (2nd century B. C.) already mentioned 48 constellations.

The constellations received proper names, taken from legends and myths,

in particular from the Greek mythology. The group of stars mentioned above

belongs to the constellation Orion. Everyone is familiar with the constella-

tion of the Great Bear [Ursa Major]. There are the constellations Auriga,

Gemini, Leo, Scorpio, Aquila, Andromeda, Vela, and so on.

In astronomy the same system of division of the celestial sphere into

constellations is used now as was used by the ancient Greeks. The impor-

tant difference is that now constellations are understood to be not mere

groups of stars, but sections of the starry firmament. At the present time

the whole sky is divided into 88 such sections --the constellations.

The stars in the constellations are denoted by letters of the Greek

alphabet in the order of decreasing brightness (a. 6._, _ , and so on). In

addition, the brightest stars have proper names. Thus, the star (_ Andro-

medae (i.e., the brightest star in the constellation Andromeda) is called



Alfaretz, thestar aUrsaMinoris--the NorthStaror Polaris, thestar
aGeminorum(i. e., thebrighteststarinGemini)--Castor,and8Geminorum
-- Pollux. Thebrighteststar in thesky--a CanisMajor-- is calledSirius.

Becauseof thegreatdistancesto thestars andthesmallapparent
angularvelocityof their motionrelativeto oneanother,evenastronauts
onflights to remoteplanetsof thesolar systemwill observetheusual
terrestrial pictureof thestars andtheir constellations.Moreover,from
thespaceshipit will bepossibleto seethemduringthewholeflight, since
therewill benocloudinessandthedazzlinglybrightsunandmoonwould
notobstructobservationof thestars.

Theuseof astronomicalmethodsof spacecraftnavigationrequiresthe
selectionof starsfor thesolutionof a givennavigationproblem. The
positionsof thestars, their spectralcharacteristicsandtheir brightness
are thebasicfactorsto beconsideredin selectingthestars to beusedfor
spacenavigation.

Theapparentbrightnessof thestar is denotedbyits stellar magnitude.
Evenin ancienttimesattemptsweremadeto classifystars bytheir apparent
brightness. Twothousandyearsago,Hipparchusproposedto dividethe
stars accordingto their brightnessintostellar magnitudes.*This method
of expressingthebrightnessof stars bythestellar magnitudeis still used
today.

The classificationof stars into stellar magnitudes,dueto certain
featuresof our eyesight,is basedon the _Veber-Fechnerlaw. This
law is commonfor all the sensoryorgansof manandis usedby physi-
cists to estimatetheintensityof soundsandnoises. For theeyesightthis
lawcanbeformulatedasfollows: if the strength of the light
source varies in a geometrical progression, then the
corresponding sensation of brightness varies in an
arithmetic progression.

Thescaleof apparentbrightnesswasdefinedsothattheratio of the
brightnessof astar of a givenmagnitude(Era)to thebrightnessof a star of
thenextlowermagnitude(Era+,) is constant:

E,,, = const.
Em+l

Let us denote this ratio by n. Then, stars of the second magnitude are

weaker than stars of the first magnitude by a factor of n. Stars of the third

magnitude are weaker than stars of the second magnitude, also by a factor

of n, and so on. Compared with the brightness of a star of the first magni-

tude, the brightness of a star of the second magnitude is lower by a factor

of n', the brightness of a star of the third magnitude is lower by a factor

of n_, of the fourth magnitude by a factor of nL of the fifth magnitude by a

factor of n 4, and so on.

Study of ancient star catalogues has shown that for all the observers the

ratio of the brightness of stars of two adjacent stellar magnitudes was

maintained quite accurately as approximately 2.5. It was determined that

on the average n = 2.512. Thus, a star of any magnitude shines with a

luminosity approximately two-fifths that of the stars of the preceding stellar

magnitude. For a more accurate notation of the apparent brightness of

stars, the stellar magnitudes are expressed not only by integers, but also

by decimal fractions, and the brightest celestial bodies even have a negative

stellar magnitude.

* [Ptolemy is usually credited with inventing this method of classifying the stars.]



A man with an average eyesight can see stars up to the sixth stellar

magnitude inclusive. It is calculated that there are about 4800 such stars

in the sky /17/. According to some other data, the number of stars visible

by the naked eye is estimated to be 5720 /18/. By means of modern optical

instruments it is possible to observe stars up to the 21st or 22nd stellar

magnitude. The number of stars up to the 21st stellar magnitude in the sky

is estimated to be approximately 889 million.

The apparent brightness of artificial space objects is also estimated by

stellar magnitude. Thus, in the announcement on the automatic inter-

planetary station "Mars I" of 5 November, 1962, it was stated that,

according to photographs, the station and its carrier rocket were seen on

the background of the night sky as stars of the 14th and 13th stellar magni-

tudes, respectively.

It is quite difficult to determine the zero stellar magnitude in the scale

of star magnitudes. However, if it is agreed that a certain star has a

definite stellar magnitude, then the magnitudes of other celestial bodies

can be determined with respect to this reference star.

In astronomic practice, the stellar magnitude of celestial bodies is

determined by means of special instruments called photometers. The

luminosity of a celestial body is compared with the luminosity of a star

whose stellar magnitude is determined or known. Sometimes an artificial

star is used as a standard in the instrument for this purpose.

The stellar magnitude of an international candle, placed at a distance of

l km, is 0.8. The star magnitudes of some celestial bodies are as follows:

The brightest star, Sirius, has a negative stellar magnitude of minus 1.6.

The stellar magnitude of the brightest stars of the northern sky are: Vega,

fl.l; Fomalhaut, 1.3; Polaris, 2.1. It is interesting to note that the stellar

magnitude of the sun is minus 26.8. the moon in the first and last quarters

is minus 9, and the full moon is minus 12.6. The sun is brighter than the

brightest star Sirius by approximately a factor of I0 billion.*

Travelers to other planets will observe variation of the apparent bright-

ness of planets. There will be an increase in the brightness when approach-

ing the planet and a decrease going away. Future travelers beyond the

limits of the solar system will also be able to observe a variation of the

brightness of the sun and of the nearest stars. Thus, from the boundaries

of the solar system the sun will be seen as a star of minus 4 stellar

magnitude. This is equal to the maximum brightness of Venus as observed

from the earth.

Look again carefully at the starry sky and compare the colors of the

bright stars. The red stars such as Arcturus, Aldebaran, and Antares

differ from the bluish white stars like Rigel, Deneb, and Vega. The colors

of stars vary (as the colors of solid bodies heated to different temperatures)

from cherry red to white and even a bluish color. Star colors are classified

by numbers according to a special scale. Thus, the extreme white blue

and dark red colors are estimated respectively by minus 2 and i0. Inter-

mediate colors are estimated by intermediate numbers. Thus, white

corresponds to 0, and orange to 7.

In space flight, cosmonauts may observe an interesting picture of

variation of the colors of celestial bodies (the Doppler effect**). When

* ['Ihc magnitude of the Skill iS --26.8. Sirius is - 1.6. The difference is 25.2 magnitudes or a factor of 2. b12 I_" I .]

* * Doppler. C,J. (180:_-18,5:_) An Austrian scientist. The effect called by his name was discovered

H1 184_.



flying at a high velocity towards the celestial body, it will appear bluer,

and when flying away, it will appear redder.

In the navigational systems of spacecraft, automatic direction finding

of stars will probably be effected by means of photoelectric devices. The

apparent luminosity of stars as seen by such means is also measured in

stellar magnitudes, and is termed the photoelectric stellar magnitude.

Compared to the human eye, photoelectric devices have a different

sensitivity to rays of different colors, and therefore the photoelectric

stellar magnitude of a star differs from its visual stellar magnitude.

§2. The Metagalaxy and the Galaxy. The Sun and the

Solar System

Space navigation should be based on the data of cosmology -- a science

dealing with the study of the structure of the universe. Astronauts and

pilots of spaceships should have a sound knowledge of the structure of that

part of the universe through which they have to navigate their spacecraft.

Let us follow the astronauts and get acquainted, though in general lines,

with the basic laws of the structure of the universe.

The study of the universe is mainly made by means of optical instruments

such as telescopes. Very recently, radiotelescopes of various types have

come into use, which make it possible to receive extremely weak signals

of cosmic sources of radio emission. Finally, in the last few years, it

has become possible to use satellites equipped as automatic interplanetary

stations for this purpose.

The primarly fact impressed upon us by the study of the universe is the
tremendous distances between the celestial bodies. For this reason, in

astronomy, we do not use the ordinary units of length as the meter and

kilometer but larger units such as the astronomical unit, light year, and

parsec.
The astronomical unit (a.u.) is equal to the average distance

from the earth to the sun. Until recently the astronomical unit was

considered to be 149,500,000km. This unit of length serves mainly for

measurements within the solar system. Thus, the average distance from

the sun toMercury is 0.387a. u., from the sun to Jupiter, 5.2 a.u., and

SO on.

The problems of space navigation, and the choice and calculation of

trajectories of interplanetary ships, require a very accurate knowledge of

the value of the astronomical unit. Failing this, the deviation of the trajec-

tory of a spaceship from its destination could reach many tens of thousands

of kilometers, and the flight task would not be accomplished. The problem

was that measurements of the astronomical unit by different methods gave

results differing from one another by hundreds of thousands of kilometers.

In 1961 and 1962, for the purpose of improving the accuracy of the

astronomical unit as well as solving some other scientific problems, Soviet

scientists succeeded in probing Venus with a radar beam. This new

achievement made it possible to determine more accurately the value of the

astronomical unit. According to the latest measurements, the astronomical

unit is equal to 149,599,300km with a possible error of +2000kin. This

amounts to approximately 1 part in 75,000 of the measured distance. This



outstanding result may be considered as an important contribution by Soviet

science towards the future conquest of interplanetary space.

The astronomical unit is a huge unit of distance, but the other units, the

light year and parsec, are much larger.

The light year is the path traversed by a light ray in interplanetary

space during a year. This measure of length is expressed in kilometers by

the number 9,460,000,000,000 (9.46 • I01_), i.e., a light year is equal to about

9.5 trillion kin.

But even the light year is a relatively small unit of distance in astronomy.

The distances to stellar systems are expressed by a number of light years

followed by many zeros. Even the nearest stellar system, the nebula of

the constellation Andromeda, is approximately a million light years away,

and therefore the distances to stars and stellar systems are expressed in

terms of larger units -- parsecs.

The parsec (ps) is the distance at which the radius of the earth's

orbit is subtended by an angle of 1 second. The angle subtended at a

star by the radius of the earth's orbit is called the annual parallax of the

star. The word parsec is formed by a combination of two words -- parallax

and second. The parsec is equal to 3.26 light years, or 30.8"I012km.

The distance to the nearest star, Proxima in the constellation Centaurus,

is 1.31 ps or 4.3 light years. The distance to Sirius is 2.67 ps or 8.7 light

years.

However, even the parsec is not the largest unit of length. To measure

distances to the remotest stars and star systems, and to measure their

dimensions, even larger units of length are used. These are the kiloparsec

(kps) and megaparsec (raps), which equal one thousand and one million

parsecs, respectively.

Astronomy is an ancient science, and the huge mass of data compiled

makes it possible to draw accurate conclusions on the structure of that part

of the infinite universe accessible to our survey. By means of modern

powerful telescopes it is possible to study stellar systems which are two to

three billion light years away. Even larger possibilities are opened by the

methods of radio astronomy. By means of modern radio telescopes, we

have succeeded in "penetrating" into the universe to distances of up to ten

billion light years. Considerably more modest, for the time being, are

the results of direct sounding of space by means of automatic interplanetary

stations. Measurements have been made several tens of millions of kilo-

meters from the earth -- between the orbits of Venus and Mars -- but even

these first begininngs made it possible to unveil many secrets of the

universe.

The part of the universe accessible to observation constitutes an

agglomeration of stellar systems or galaxies (Figure I), called the meta-

galaxy. At the present time, over 100 million galaxies have been discovered.

Indications have been observed that, at the limits accessible to modern

observation, there is a concentration of galaxies. This is, apparently, the

center of the metagalaxy.

In one of the stellar systems, called "the Galaxy"_ our solar system is

situated. Our galaxy is lens-shaped. It is thickest at the middle and thins

out toward the edges (Figure 2). Its diameter is about 85,000 light years

(800.101Skin).

* From the Greek word "galaktikos," which means "milky," Hencethe Milky Way asa descriptive name of

our Galaxy.



FIGURE 1. Photograph of the galaxy in the constellation Andro- 
meda, obtained by Xliller (USA) 

The reddish-yellow color of the central part appreciably differs 
from the bluish color of the spiral arms. 



Our galaxy is not uniform. It consists of individual stars of different

types, stellar clouds, star clusters, stellar associations, gaseous and dust

nebulae, clouds of interstellar gas, diffuse cosmic dust, and individual

atoms of chemical elements.
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FIGURE 2. Lateral view of the Milky Way galaxy as it would

appear to an observer situated in the plane of the galaxy (scale

in kiloparsecs)

Star clouds are huge spaces filled with individual stars. In these [unlike

star clusters] the stars are distributed at random. Star clusters --these

star groups are found in the constellations of our galaxy (the Milky Way)

and are of two kinds -- open or galactic, and globular (Figures 3 and 4).

The first are distinguishedby sparse concentration of stars in the center of

the cluster, the second by a dense concentration of stars there• In the

galactic clusters, the number of stars is estimated from hundreds to several

thousands. Another example of a galactic cluster is Pleiades. To the

unaided eye from six to eleven stars are visible, while with a telescope it

is possible to see hundreds of stars. One of the globular clusters, the

cluster in the constellation Hercules, is seen as a nebulous star of approxi-

mately the sixth stellar magnitude. Only by means of a powerful telescope

can we see it as a whole cluster of stars in the form of a sphere, strongly

concentrated towards its center. In this star cluster there are hundreds of

thousands of stars, of which only the brightest are seen. Stars of lesser

luminosity, even those as bright as the sun, are not seen.

Star associations, discovered in 1947 by Academician V. A. Ambartsum-

yan, have a common origin; the process of formation of these stars

occurred relatively recently and very likely is taking place even now. In

associations, the stars are not as crowded as in star clusters. Clusters

are unstable as the mutual attraction between them is negligible, and the

tremendous attraction of the galaxy as a whole tends to scatter any cluster

of stars.
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The existence of clouds of cosmic dust in interstellar space not only

weakens the apparent luminosity of stars and causes them to appear red
but also hides huge regions of our galaxy from us. Dark clouds or dark

nebulae on the star sky are clouds of cosmic dust (about 10,000 tons of it

falls daily on our planet) and gas, which completely hide the light of remote

stars. Thus, the central parts of our galaxy are hidden from us by dark
nebulae.

In addition to dust, there exists in interstellar space a highly rarefied

gaseous "atmosphere" consisting mainly of atoms of hydrogen, as well as

a certain quantity of atoms of helium, oxygen, nitrogen, sodium, calcium,

and certain molecules (CH, NH, H20). There are also clouds of individual

gases. The average gas density in our galaxy is negligible, amounting to

only several atoms per cubic meter of space. However, the total mass of

the gas is large, being almost equal to the mass of all the stars of the galaxy.

The galaxy rotates about an axis perpendicular to its plane, but not as

a solid body. The motion of the stars in the galaxy resembles the motion

of the planets about the sun; the farther from the center of rotation, the
slower the motion.

The sun is situated almost exactly in the plane of the galaxy at a distance

of about 23,500 light }ears from its center (see Figure 2). It moves in its

orbit about the center t_f the galaxy with a velocity of about 230 km/sec,

completing a revolution in about 190 million years. The total number of

stars in the galaxy is tremendous, 120- 109 , and the total mass of the galaxy

is 15,864-1043g, which is 8"101° times the mass of the sun.

Powerful sources of radio emission have been detected in the galaxy.

Three types of them are known now. The maximum radio emission of the

first type is situated near the center of the galaxy. Its source is clouds of

interstellar gas, ionized by the light of the nearest hot stars. The second

type of radio emission is associated with the energy radiated by free

electrons moving with tremendous velocities in the weak magnetic fields of

the rarefied medium between the interstellar gas clouds. The first and

second sources usually have large angular dimensions (up to 20' and more)

and are called radio nebulae. Radio emission sources of the third type, in

contrast to the first two, have smallangular dimensions (1- 10'), and

therefore they are sometimes called "radio stars."

Some "radio nebulae" are formed by the explosion of supernovas; the

Crab nebulae in the constellation Taurus (Figure 5) consists of the remnants

of such an explosion. However, most of the presently known "radio stars"

and "radio nebulae" are not connected with our galaxy, but they are situated

beyond its boundaries.

Our galaxy is made of substances which consist of atoms whose nuclei

contain protons and neutrons and whose outer shells contain electrons. Some

scientists assume that there are galxies in the universe which consist of

antimatter -- atoms having antiprotons in the nucleus and positrons in the

shell. In these worlds, antiparticles are stable and our particles, unstable.

However, in spite of this, all the physicochemical properties of the atoms
in both worlds would be identical. In "anti-worlds" there would be the same

chemical compounds with the same composition and properties, and it is

perfectly possible that there exist in them the same organic and inorganic

materials, and perhaps the same living organisms, and even human beings,
as in our world.
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The sun is the star nearest to us. It is designated by the symbol Q).

The mean distance from the earth to the sun is equal to one astronomical

unit, i.e., 149,457,000km.* This distance is traversed by a light ray in

8rain 18see.

Due to the eccentricity of the terrestrial orbit, the distance from the

earth to the sun varies approximately within J= 5 millionkm. The diameter

of the sun is 1,390,000km, which is 109.1 times as large as the diameter

of the earth, and the angular diameter of the solar disk as seen from the

earth is about 32'.

The mass of the sun is 1.99"1033g, which amounts to 99.86% of the mass

of all the bodies of the solar system. The average density of the sun is

not high, being equalto 1.41g]cm s, and the gravity acceleration on its sur-

face is 275m]sec 2, which is approximately 28 times as much as that on

the earth. The circular velocity for the surface of the sun** is 439.3km/sec

and the escape velocityt is 619.4 km/sec.

The sun is an incandescent gaseous body. The temperature of its surface

layers is about 6000°C. In the center of the sun the temperature reaches

20,000,000°C. The sun is the source of a tremendous amount of energy.

Each second it sends to the earth 40 quintillion kilocalories of heat. A

considerable part of this energy is scattered and partially absorbed by the

atmosphere. On the average 30% of thissolarenergy reaches the earth's

surface in the course of one year. This energy would be sufficient to melt

and boil a solid layer of ice 1000 km thick around the earth.

According to calculations, the sun loses about 240 million tons of its

mass every minute through radiation.

Main composition of the thermal radiation of the sun

%

Infrared rays ............................ 51.0

Visible rays ............................. 41.0

Ultraviolet rays .......................... 7.7

Along with the the thermal radiation, the sun sends into space fluxes of

charged particles of matterft. These particles, accelerated in the magnetic

fields of the sun, acquire tremendous energy-- the energy of cosmic rays.

Relative composition of the cosmic radiation
%

Protons ............................... _0

=-particles ............................ 19

C, N, O .............................. 0.66

Na, Mg, A1, Si ......................... 0.12

S, A, Ca ............................. 0.04

Fe .................................. 0.02

The maximum intensity of the cosmic ray fluxes reaches 109 particles

per cm2/sec.

* [Notice that a few pages earlier, the value of the a.u. is given as 149,599,300km.J

** [The circular velocity is the velocity of a theoretical satellite whose orbit is just above the surface ot the

sun. Cosmic velocities are dealt with in Chapter I1.]

t [Escape velocity isthe velocity required of a body to leave the gravitational field of the celestial body from

which it ts launched. ]

tt So-called corpuscular radiation.
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FIGURE 5. Photograph of the Crab nebula in the constellation 
Taurus, obtained through a light filter which transmits only the 
red line of nitrogen 



The  tremendous energy production of the sun is due to thermonuclear 
react ions taking place in the inter ior  of the sun a s  a r e su l t  of the high 
temperature  and huge p r e s s u r e  existing in i t s  center. 

is the conventionally accepted boundary of the solar gaseous sphere,  over  
which the so l a r  a tmosphere is situated. 
observed on the surface of the sun (F igu re  6). 

. 
The visible su r face  of the sun is called the photosphere. The  photosphere 

Sunspots, faculae, and grains  are 

FIGURE b. Sunspots and grains 

Sunspots are solar formations with a temperature  of 4000 to  4500 "C. 
The spots look da rk  solely by reason of the contrast  with the brighter 
photosphere, which has  a higher temperature .  The spots have diverse  
fo rms ,  but a r e  mostly c i r cu la r .  
on the sun. 
dimensions of sunspots often reach 90,000 km i n  diameter,  which is approxi- 
mately 7 t imes  the diameter  of the earth.  
s iderably l a r g e r  dimensions appear.  Thus, in March 1947, a spot of 
214,600 km was observed. 
the surface of the sun. 

the rotation of the sun about i t s  axis;  they also move independently over  
the su r face  of the sun. 

of the sun covered by them. 
The complete period of variation of the so l a r  activity is approximately 2 2  
y e a r s .  
y e a r s .  

Faculae on the so l a r  surface have the form of hairlike fi laments of 
different fo rms ,  whose brightness is higher than the brightness of the 
photosphere. Sunspots a r e  always accompanied by faculae, but on occasions 

A sunspot is a vortex of turbulent gases  
The l ifespan of a spot is from one day to seve ra l  months. The 

Occasionally, sunspots of con- 

Often pa i r s  and groups of spots a r e  formed on 

The spots move f rom the eas t e rn  to the western limb of the sun due to 

The so la r  activity depends on the number of spots and the relat ive area 
Usually spots appear  periodically on the sun. 

Maximum so la r  activity is observed on the average every 11.1 1 
The l a s t  maximum occurred in 1958. 
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faculae are also observed separately from sunspots. Sometimes facular

fields are formed which cover considerable sections of the solar surface.

Grains are bright formations of oval form, covering the whole photo-

sphere in a reticular pattern. The dimensions of grains are relatively

small, reaching 400 to 500km. Their temperature is i00 to 200°C higher

than the temperature of the photosphere. The lifespan of an individual grain

is only several minutes.

The sun is surrounded by an incandescent luminous atmosphere. A thin

layer of the solar atmosphere (about 500 km thick) lying immediately over

the photosphere is called the reversing layer. It passes gradually into the

chromosphere, visible during total solar eclipses as a thin reddish ring

around the sun. The chromosphere reaches a height of 15,000kin.

Calcium, hydrogen, helium, iron, titanium, and other chemical elements

have been observed in the solar atmosphere. The lowest layer of the solar

atmosphere has a gas pressure a thousand times lower than the atmospheric

pressure at the surface of the earth.

Very bright, short-lived flares -- eruptions of gas that flare up rapidly-

are observed in the chromosphere. The lifespan of these flares is only

several minutes. They most often appear during the development or decay

of sunspots. Flares are peculiar explosions, resulting from a rapid

compression of magnetic fields, leading to a short-lived heating of a small

volume of solar gas to a temperature of about 30 million degrees. According

to the estimate of A. Sebernyi, corresponding member of the Academy of

Sciences of the USSR, some solar flares are equivalent to a simultaneous

explosion of from 30 to I00 thousand megaton atomic bombs over the area

of the flare. New interesting data on solar flares have been obtained by

means of unmanned interplanetary stations and space rockets.

During solar flares, short-wave, X-ray, and ultraviolet radiation is

generated, and protons with an energy up to i00 million ev are emitted.

The short-wave radiations enhance the ionization of the earth's ionosphere

which sometimes results in interruption of radio communication in the short-

wave range. Penetration of protons into the earth's atmosphere causes

absorption of radio waves in the polar regions. These protons also consti-

tute a serious hazard for space flights.

In addition to these, large particle fluxes, moving with velocities of

1000km/sec and more, are ejected by flares. They cause the aurora

polaris and magnetic storms on the earth. Finally, flares are accompanied

by powerful radio-wave emissions, which sometimes lead to a disturbance

in the operation of radar devices and a loss of radar visibility of the target.

With very strong flares, the flow of cosmic rays moving in the direction

of the earth sharply increases, indicating the formation of particles of a

high energy --up to I00 billion ev.

Cosmic radiation constitutes a serious danger both for the crew and

equipment of spacecraft. It causes a decrease in the insulation properties

of insulating materials, a modification of the properties of plastic materials,

and possibly even a modification in the properties of metals. Plastic

materials are particularly sensitive to cosmic radiation. Failures of

electronic equipment are also possible.

According to calculations, the weight of the radiation shield of a space-

ship should amount on the average to about a quarter of a ton per square

meter of the shielded area /22/. Shielding from radiation danger in space

flights is a serious problem which scientists and engineers must solve.
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In var ious places, huge je t s  or f lame tongues a r e  ejected f rom the 
chromosphere and ascend tens and hundreds of thousands of ki lometers .  
They are cal led prominences (Figure 7) .  
is a periodical process ,  coinciding mainly with solar  activity, but the 
periodicity h e r e  is less c lear ly  defined and, also,  the prominence maxima 
occur  usually earlier than the peak of so la r  activity. 

The formation of prominences 

FIGURE T, Dliicrcnt  types of promineoces 

The  broad bril l iant halo observed during total so l a r  ecl ipses  around the 
sun is called the so la r  corona (F igure  8). The lower boundary of the corona 
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is thechromosphere.Thecoronaextendsoverdistancesconsiderably
beyondthesun'sradius. Thefurther from thesun, theweakerit gets,
graduallymergingwith thebackgroundof thesky. In severalinstances,
thecoronahasbeenobservedextendingto distancesof 4 to 5solar radii
from thesurfaceof thesun.

Theform of thecoronais differentin differentyearsandchangesin
accordancewith theamountof sunspotsandprominences.At periodsof
maximumsolar activity, the coronasurroundsthesunon all sides
approximatelyequally; at minimumit is elongatedat thesolar equator,
andat thepolesit reducesto short rays. This leadsto theconclusionthat
thereasonsfor theformationof thecoronaarecloselyrelatedto the
processeswhichtakeplaceonthesurfaceandin theatmosphereof thesun.

In 1942--1945theradioemissionof thesunwasdetectedin quitea wide
band( 8mmto 15m). Theradiationof thechromospherehaswavelengths
of theorderof centimeters,theradiationof thecorona,of theorder of
meters. Theradioemissionof thesunis dueto thesolaratmosphere,
which,asanystronglyheatedbody,is a sourceof electromagneticenergy.
Theintensityof radioemissiondoesnotremainconstant. Individualsurges
in theradioemissionareconnectedwithsunspotsandchromosphericflares.

For a systematicstudyof all thephenomenaof thesunandfor afore-
castingof thegeophysicalphenomenacausedbythevariationof thesolar
activity, theso-called"SunService"wasorganizedonaninternational
scale. A wholeseriesof observatoriesin manycountries,includingthe
USSR,conductdailyobservationsaccordingto oneplan. In theUSSRall
theobservationsare sentfor processingto thecentral "SunService,"
headedby theSolarResearchCommitteeof theAcademyof Sciencesof the
USSR.Particularly valuableresultsonobservationof thesunandin regard
to clarifyingtheconnectionbetweengeophysicalphenomenaandsolar
activitywereobtainedduringtheInternationalGeophysicalYearof 1957-
1958,whichwaschosento coincidewith thetimeof maximumsoIaractivity.

Thesunexertsa greatinfluenceontheconditionsof spaceflights. The
powerfulattraction,or gravitationalfield of thesun, is afactor determining
thechoiceof thetrajectoryof the spaceship,therequiredvelocitiesfor the
executionof the interplanetaryflight, andits periods. Theflux of charged
particles andthesun'sintenseultraviolet radiationnecessitatethefore-
castingof solar activity, andchoosingof times most favorablefor
spaceflights; this involvesobservationof solar activity, andtheorganiza-
tionof a warningserviceagainstexcessiveradiationintensity. It is also
necessaryto takeintoaccountin spaceflight thevariationsof themagnetic
field of theearthanddisturbancesof radioreceptionconnectedwithsolar
activity. Finally, thesun, like anyothercelestialbody,canbeusedfor
thedeterminationof themotionparametersof a spaceship.

Muchis still unclearasto thenatureof thesun, its influenceongeo-
physicalprocesses,andtheconditionsof spaceflights. Unprecedented
possibilitiesfor thesolutionof theseproblemsareopenedby thelaunching
of artificial earthsatellites, automaticinterplanetarystations,andspace-
ships.

Thesunis thecentralbodyof thesolar system(Figure9), whichincludes
themajorplanetsandtheir satellites, the minorplanets,or theasteroids,
comets,meteorshowersandindividualmeteors,dustlikematter, andalso
somemeteoricmaterialscatteredin interplanetaryspace.
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Ninemajorplanetsareknownat present:Mercury,Venus,Earth, Mars,
Jupiter, Saturn,Uranus,Neptune,Pluto,aswellas31satellitesof these
planets. Thenumberof minorplanetsdiscovered,movingmainlybetween
theorbits of MarsandJupiter, amountsto over1800andthenumberof
cometsto about500. It is assumedthatthereareover100,000cometsand
50,000to 100,000minorplanetsin thesolar system. It is alsopossible
thatthereareothermajorplanetssituatedbeyondtheorbit of Pluto. There
is alreadystrongevidenceof theexistenceof a tenthmajorplanetin the
solar system-- Transpluto. Thedistanceof this planetfrom thesunwas
calculatedandits revolutionperiodaboutthesundetermined,butwehave
notyet succeededinobservingit directly.

J

Asteroids
m

FIGURE 9. The solar system with the orbit of Halley's comet (the

position of the comet in individual years is indicated on the orbit)

Compared with the sun, the dimensions of the planets are small(Figure
10). Their orbits lie approximately in the same plane, the plane of the

ecliptic (Figure 11).

All the bodies of the solar system revolve, strictly speaking, not around

the sun, but around the common center of gravity of the whole solar system,
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with respect to which the sun itself describes a very complicated curve.

However, since most of the mass of the entire system is concentrated in

the sun, the displacement of thecenter of revolution is small.

' disc

/_"_of the solar

C) oo Neptune Uranus

Jupiter Saturn

0 o o o
Earth Venus Mars Mercury

0"-- -- --o o Pluto
Earth d¢_ Moon

_10 ZO_ 380 d_dlO $_0 thousands of• ' • , I i t _ kilometers

FIGURE 10. Comparative dimensions of the major planets and of
the sun

FIGURE 11. Inclination of planetary orbits to the plane of the Earth's

orbit (the plane of the ecliptic)

What are the boundaries of the solar system? They are determined by

the distances of the remotest satellites of the sun -- the so-called long-period

comets with periods of revolution close to one and a half million years.

Some of these comets at maximum distance are 6 trillion kin(6 • 1012kin)

from the sun. This distance may be considered as the boundary of the solar

system.

The sun together with all its satellites is moving in space relative to its

surrounding stars with a velocity of about 19.5 km/sec towards the constel-

lation Hercules. As has already been said, the solar system participates

in the revolution of the entire galaxy around the galactic center.

We have already mentioned the fantastically great distances to the

celestial bodies. Their remoteness puts in doubt the possibility of flights

to other stars and, for the present and the near future, space flights will

have to be limited to the solar system, and more specifically, to the

nearest bodies of the solar system, i.e., the moon, Venus, Mars, and the

nearest minor planets. Therefore astronauts and pilots of spaceships

should have a sound knowledge of the physical characteristics of the bodies

of the solar system, the laws of their motion, and the conditions which they

will encounter on the moon and on the nearest planets. Before considering

these problems it is necessary to study, at least briefly, the various

astronomical coordinate systems and also the elements which determine the

motion parameters of celestial bodies in space. Otherwise, it is not
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possible to characterize the bodies of the solar system from the point of

view of the requirements of areonautics and space navigation.

_3. Systems of Celestial Coordinates. Elements of

Planetary Orbits

Several coordinate systems are used in astronomy to determine the

position of a celestial body in space. The galactic coordinate system is

convenient for determining the position of stars and star clusters of our

galaxy, as well as of star systems situated beyond the limits of the galaxy.

The positions of planets with respect to the sun and to the earthfs orbit are

more conveniently determined in the so-called ecliptic coordinate system,

whereas the positions of celestial bodies with respect to the earth are most

conveniently determined in the equator and horizon systems of celestial

coordinates. The names of these coordinate systems originate from the

names of the planes which are basic in the given system. Naturally only

the last three coordinate systems are of interest to us and these will there-
fore be discussed in more detail.

In any system of spherical celestial coordinates, use is made of an

auxiliary sphere of arbitrary radius, called the celestial sphere, with the

center at one point in space. The celestial body is then projected on this

sphere.

The ecliptic system of coordinates. The ecliptic is the well-

known term applied to the great circle of the celestial sphere formed by the

Pole of the P

_w

FIGLIRE 12. Ecliptic system of coordinates:

Pand p'- poles of the earth; %'- vernal equi-

nox; _and >,- astronomical latitude and

longitude of the celestial body M

intersection of the plane of the earthrs

orbit with the celestial (star) sphere.

The annual motion of the sun among

the stars, as seen from the earth,

takes place along the ecliptic.

In the ecliptic coordinate system,

the center of the celestial sphere is made
to coincide with either the center of

the sun, in which case the ecliptic co-

ordinates of the heavenly body are called
heliocentric, or with the center of the

earth, in which case, the coordinates

are called geocentric.

The principal circles of the ecliptic

coordinate system are the ecliptic and

the latitude circle of the celestial body

(Figure 12). The latitude circle of a

celestial body is the term applied to the

great circle of the celestial sphere

passing through the body and through

the poles of the ecliptic. The position

of the body in this coordinate system

is determined by the astronomical

longitude t, and the astronomical

latitude _. The astronomical latitude of a celestial body is measured from

the vernal equinox or Aries (T) (the point of the ecliptic at which the sun is

situated on 21 March of each year) along the ecliptie in the direction of the
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annual motion of the sun to the point of intersection of the latitude circle

of the body with the ecliptic. The astronomical latitude is measured along

the latitude circle of the body in both directions from the ecliptic from

0 to • 90 °.

In the equator system of coordinates (Figure 13), the basic

plane is the plane of the celestial equator, coinciding with the plane of the
terrestrial equator. The continuation

z

P

F

Z'

FIGURE 13. Equator system of coordinates

zand 2'- zenith and nadir; • and 6- right

ascension and declination of the celestial

body _; ¢ - hour anglc; p- polar distance

of the axis of revolution of the earth

formes the axis of the celestial

sphere, and its intersection with

the celestial sphere forms the

sphere's northern (P) and southern

(P')poles. The great circle of the

celestial sphere passing through

these poles is called the hour circle

of the celestial body. The ecliptic

intersects the equator at two points,

the vernal (T)and the autumnal (_)

equinoxes, and the vernal equinox

is therefore common to both the

ecliptic and the celestial equator.

In this coordinate system the

position of a celestial body on the

celestial sphere is determined by

the right ascension a and the

declination _ of the body. The

right ascension is measured from

the vernal equinox along the

celestial equator in a direction

opposite to the apparent daily rotation of the celestial sphere up to the point

of intersection of the hour circle of the body with the celestial equator.

Sometimes the right ascension is expressed not in degrees, but in time units,

taking 360 ° as corresponding to 24 hours. The declination of a celestial

body is measured along the hour circle of the body in both directions from

the celestial equation from 0 to ± 90 °.

The apparent rotation of the celestial sphere resulting from the daily

rotation of the earth relates to the same axis and this means that the

equatorial coordinates of celestial bodies do not vary. This makes it

possible to construct in this coordinate system maps of the star sky and

star atlases.

Sometimes the position of the celestial body is determined by the

declination of the body and its hour angle. The great circle of the celestial

sphere which passes through the zenith and the poles is called the meridian

of the observer. The angle between the meridian of the observer and the

hour circle of the celestial body is called the hour angle t of the body. The

hour angle is measured from the point Q of the equator in the direction of

rotation of the celestial sphere. In conclusion it should be noted that the

hour angle varies in a uniform manner: in 24 hours it varies by 360 ° .

Knowing the equatorial coorditlates of a spaceship makes it possible to

determine its position among the stars, e.g., for purposes of optical

tracking. Thus, in one of the TASS communiques on the 1961 launching of
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theautomaticinterplanetarystationto theplanetVenus,theprecalculated
equatorialcoordinatesof thestationfor 1200hoursMoscowtime for
3 March,1961,weregiven. Theannouncementsaid: "The right ascension
of theautomaticinterplanetarystationat this timewill be0hours21minutes
31seconds:thedeclination,minus1degree03seconds."

The horizon system of coordinates (Figure14),whosebasic
planeis theplaneof thetruehorizon, is usedtodeterminethepositionof

a celestialbodywith respectto the
Z

P

Z'

FIGURE 14. Horizon system of coordinates

A and h - the azimuth and altitude of the

celestial body M; z - the zenith distance of

the body.

earth's surface. Knowing the

horizontal coordinates of a spacecraft

makes it possible to estimate the

conditions for observation at a given

time from a given point on the earth.

The pole of this coordinate system is

the piont of intersection of the plumb

line with the celestial sphere, called

the zenith z. The great circle of the

celestial sphere passing through the

zenith, through the opposite point

(nadir z I) and through the celestial

body is called the vertical of the body.

The position of a celestial body

and of a cosmic object in the horizontal

coordinate system is determined by the

azimuth A and altitude h. The azimuth

is measured by the arc of the true

horizon from the north point N to the

point of intersection of the vertical

with the true horizon. The azimuth

is measured from the north point to

the east. The altitude is measured by the arc of the vertical from the true

horizon to the celestial body within the range of 0 to ± 90 °. Celestial bodies

and spaceships having negative altitudes are situated below the horizon and

are not visible from the given point on the earth.

If we projeet the celestial body on the surface of the earth, we obtain a

point at which its altitude is equal to 90 o. This point is called the geo-

graphical place of the body, G.P. Owing to the rotation of the earth, this

point moves over the earth's surface. By analogy, the point at which the

height of the spaceship is equal to 90 ° can be called the geographical place

of the spaceship. To define the position of a spacecraft as viewed from

the earth, this point can be calculated for a given moment. Thus, in the

above-mentioned TASS announcement, it was said: "By 1200 hours Moscow

time on 3 March, 1961, the station will be over the point with the coordinates

1 degree 15 minutes south latitude and 69 degrees 30 minutes east longitude. "

These were the coordinates of the geographical place of the interplanetary

station at the indicated moment.

Transformation from one coordinate system to another is made using

the formulas of spherical trigonometry.

The above systems of spherical coordinates have a serious disadvantage;

they do not allow for the determination of the position of the celestial body

in space, but only the position of the body on a sphere of arbitrary radius.
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This, however,is completelysufficientto solvemostproblemsof practical
astronomy. Indeed,theairplanepilot whois measuringthecoordinatesof
celestialbodiesin order to determinethepositionof theairplaneis not
interestedin thedistancesto them; heonlyneedsto knowtheangularco-
ordinatesof thecelestialbodies,whichdeterminetheir positiononthe
celestialsphere. However,in order to solvemostof theproblemsofspace
navigationonehasto knowthepositionin spaceof thespacecraftandof the
celestialbodies.

Thus,for flights insidethesolar system,it is possibleto usea
rectangularcoordinatesystemcommencingat thecenterof thesun(Figure
15). The OX axis of this coordinate system can be directed to the vernal

equinox T, the OF axis lies in the plane of the ecliptic, and the OZ axis is

perpendicular to the OX and OY axes and directed to the pole of the ecliptic.

The rectangular coordinates x, g, and z of a spaceship give an unequivocal

determination of its position in space.
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FIGURE 15. Rectangular heliocentric coordinate

system for the solution of problems of space

navigation
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FIGURE 16. Elements of planetary orbits

/I- aphelion; n- perihelion; t - inclination of the

orbit; •-radius-vector of tile planet; u- right ascen-

sion of tile ascendmgnode; _o- angular distance of

tile perihelion from the node; _- the truc anomaly of

thc planet

It is, of course, possible to choose other coordinate systems. For

example, the positions of a spacecraft and of celestial bodies can be

determined in a rectangular coordinate system commencing at the center

of the earth and with the plane XOF coinciding with the equatorial plane of

the earth.

The calculation of the current spatial coordinates of celestial bodies

and spaceships is possible only if the elements of their orbits are known.

The motion of planets with respect to the sun takes place along elliptic

orbits.

The position of the orbit of a planet in space and of the planet on its orbit

are determined by the elements of the planet's orbit; namely,

the inclination of the orbit, longitude of the ascending node of the orbit,

distance of the perihelion from the node, semimajor axis, eccentricity,
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and mean anomaly at a given epoch (at a given moment) or the moment of

passage through the perihelion (Figure 16).

The orbit inclination i is the angle between the plane of the ecliptic

and the orbital plane of a planet. It may vary from 0 to 1 80 ° . An angle i
larger than 90 ° corresponds to a so-called reverse motion of the celestial

body.

The ascending node _ of the orbit istheterm applied to

the intersection point of the orbit with the plane of the ecliptic at which

the planet passes from the southern to the northern hemisphere of the

ecliptic. The opposite point of the orbit is called descending node U, and

the line connecting these two points is called the line of nodes. The line of

nodes lies both in the plane of the orbit and in the plane of the ecliptic.

The longitude of the ascending node of the orbit _2 is

the angle in the plane of the ecliptic which is enclosed between the straight

line connecting the vernal equinox with the center of the sun and the straight
line connecting the ascending node with the center of the sun.

The point of the orbit nearest to the sun is called perihelion (H), and the

farthest point is the aphelion (A). The line connecting these two points is

called the line of apsides. The distance ¢0 of the perihelion from the node

of the orbit is measured by the angle between the line of nodes and the line

of apsides. It is measured off along the orbit in the direction of motion of

the planet from the ascending node to the perihelion and determines the

orientation of the orbit in its plane. Sometimes the orientation of the orbit

is determined by the longitude of the perihelion fl' = _ + ¢0. Consequently the

angle _2' is measured in two planes: in the plane of the ecliptic up to the
line of nodes and in the plane of the orbit from the line of nodes to the line

of apsides. These elements determine the position of the planet's orbit in
space.

The semimajor axis, a, of the orbit, is equal to half the distance from

the perihelion to the aphelion. The eccentricity, e, of the orbit determines

the geometrical form of the orbit and is given by the formula

e C.___ Va_'--b t

a a

where c is the distance from the geometrical center of the elliptic orbit to

its focus (the center of the sun) and b is the semiminor axis of the planet's
orbit.

For elliptic orbits 0 <e< 1. In the case of eccentricities close to zero,
the form of the orbit is close to a circle.

The mean anomaly M is a quantity equal at any moment to the arc

which the planet would describe after passing through the perihelion if moved

uniformly in a circular orbit completing one revolution in the period of

rotation P of the planet. Obviously, the mean diurnal motion of the planet
is 360°/P.

Let us now denote by To the time of the passage of the planet through the
perihelion. Then, for the time T the mean anomaly is

360° T
M= --_--(--T0).

Together with the mean anomaly the true anomaly of the planet has also
to be considered.
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The true anomaly _ is the term applied to the angle which is formed

by the line of apsides and the straight line r connecting the center of the sun

and the planet. This angle is measured from the perihelion in the direction

of motion of the planet. The true anomaly determines the position of the

planet on the orbit.

The motion of the planet along the orbit is characterized by its period of

revolution. We distinguish between sidereal and synodic periods of

revolution. The sidereal or stellar period of revolution is the term applied

to the time interval in which an observer situated on the sun would see the

planet in the former position with respect to the stars. The synodic period

is the term applied to the time interval in which the planet, as viewed by a

terrestrial observer, arrives at its former position with respect to the sun.

It is perfectly clear that owing to the earth' s motion along its orbit around

the sun these two periods are different. Thus, the sidereal period of

revolution of the planet Mars is 1 year 231.73 days, whereas the synodical

period is almost 2 years 50 days.

These are the elements which determine the orientation of the orbit of a

planet in space and the position of the planet on the orbit. It should be noted

that these same elements also characterize the orbits of interplanetary ships

and the orbits of artificial satellites of planets. The only difference is that

the inclination of the orbit of satellites is measured with respect to the plane

of the planet's equator, and the designation of the extreme points of the

orbit includes a term denoting the planet.*

For artificial satellites of the earth these points are called perigee and

apogee**; of Venus, peri- and apovenus; of Mars, peri- and apomars; of

Saturn, peri- and aposaturn; of Jupiter, peri- and apojovian.t The extreme

points of the orbits of artifical satellites of the moon are called peri- and

apomoon or peri- and aposelena, tt

_4. The Earth

For spacecraft of any destination the earth constitutes the planet of

departure and arrival.

The earth is an ordinary planet of the solar system. Its astronomical

designation is 6 or _D. The true form of the earth -- geoid -- is close to an

ellipsoid of revolution having a small flattening at the poles. The terrestrial

ellipsoid is now thought to have the following characteristics:

International Soviet

ellipsoid, ellipsoid,

1910 1940

Equatorial radius, km ..................... 6378.388

Polar radius, km ......................... 6356.912

Flattening ............................. 1 : 297.0

6378.245

6356.863

1:298.3

* The extreme points of the orbits of spaceships are sometimes called pericenter and apocenter.

** From the Greek word geo--Earth.
t From the Latin name of Jupiter --Jove,

'fl" The ancient name of the moon was Selena.
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For solving practical problems not requiring a high degree of accuracy,

the earth is taken to be a sphere of radius 6371 kin.

Here are some physical characteristics of the earth. The area of its

surface is 510,083,000km 2, its volume is 1.083320.10 z2km 3 and its mass

is 5.974 •l0 P g. About 7% of the mass of the earth is made up of water in

its various forms. The average density of the earth is 5.517 g/cm 3, and

the average density of the surface layers is only 2.65 g/cm s. The circular

velocity and escape velocity for the surface of the earth are 7.9 km/sec and

11.2 km/sec, respectively.

The mean distance of the earth from the sun is 149,457,000 km. The

earth moves around the sun along _n elliptical orbit with a mean velocity
of 29.76km/sec, or about 100,000kin/hr.

The sidereal revolution period of the earth is I year 0.006 days. The

inclination of the earth's equator to its orbit is 23°27 '. The eccentricity of

earth's orbit is small, being equal to 0.01673. This indicates that theorbit

of the earth is very close to a circle. The perihelion of its orbit occurs on

about 3 January and the aphelion on 4 July.

Owing to the diurnal rotation of the earth, all the points of its surface

have a certain linear velocity Vd, which can be determined by the formula
(in m/sec):

Vd ---_465 cos ?,

where _ is the latitude of the given point.

This velocity, naturally, should be taken into account in the launching of

spacecraft. When a spacecraft is launched in an eastern direction this

velocity "helps" it to get into orbit. If the spacecraft is launched, for

example, from the equator to the east and the required velocity for entering

the appropriate orbit is 7.465 km/sec, then the rocket engines need only

give the ship avelocity of 7.0km/sec. The remaining 0.465km/sec are

"added" to the ship by the rotating earth.

The most important physical characteristic of the earth is the gravita-

tional acceleration on its surface. The gravitational acceleration deter-

mines the form and parameters of the orbits of spaceships leaving the

earth, and for a given orbit it determines the required initial velocity.

Theoretical and experimental studies show that the gravitational acceler-

ation is not constant for different points of the earth's surface. This fact

was first noted in 1672 by the French astronomer Riche. Fifteen years

later Isaac Newton proved theoretically that due to the flattening of the

earth as a result of its diurnal rotation the gravitational acceleration should

decrease from the poles to the equator. This conclusion was subsequently

confirmed by numerous direct measurements at various points of the
earth's surface.

Therefore the gravitational acceleration reduced to sea level depends on

the average only on the latitude of the location. Its magnitude g_ for any

point of the earth's surface can be calculated by the formula

g_ = go + (ggoo -- go) sin _ ?,

where go and ggoo are the gravity accelerations at the equator and at the

poles, respectively. For the pole g_o = 983.2 cm/sec 2, and for the equator

go -- 978.0cm/sec 2.
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For practical calculations not requiring a high degree of accuracy, the

gravitational acceleration for the whole earth is equal to 981 cm/sec 2.

The results of direct measurements of the gravitational acceleration at

various points of the earth's surface differ in a number of cases from

calculated values. These deviations are called anomalies of the gravitational

force.

The anomalies are due to nonuniformity in the structure of the earthrs

core, both with respect to visible external masses (mountain masses,

islands, and so on), and to the density of the rocks forming the core.

However, the magnitude and character of the anomalies are also affected

by the internal layers of the earth.

In addition to the gravitational field, a magnetic field has also been

observed in the space around the earth. At present, it is assumed that the

general magnetic field of the earth can be represented as a sum of many

magnetic fields: the field of uniform magnetization of the terrestrial sphere,

originating mainly from the internal layers of the earth; the continental or

residual field, due to the nonuniform structure of the internal layers of the

terrestrial core; the anomalous field, due to magnetization of the upper

layers of the terrestrial core; the external field, produced by electric

currents in the upper layers of the atmosphere; finally, the variation field,

due to periodic variations in the character of the motion of charged particles

in the upper layers of the atmosphere.

For a long time, the magnetic field of the earth has helped to solve a

number of the most important problems of ship and airplane navigation.

Ordinary magnetic, gyromagnetic, and gyroinduction compasses are used

to measure the vehicle's course and to perform the navigation in a given

direction. Measurements of the magnitude of the elements of the terrestrial

magnetism, for example, the total force of the magnetism or its compo-

nents, allow the navigator to obtain the position line of the airplane.

Terrestrial magnetism will also aid space navigation. For example, many

scientists are considering the possibility of stabilizing the orbits of low-

orbit satellites by means of a sensitive magnetic element.

The motion of spaceships in the earth's magnetic field causes some

dynamic effects, which result in a deviation of the actual orbit of the space-

ship from the calculated one. These deviations, though small, should be

taken into account in a number of cases.

A quantitative estimate of terrestrial magnetism can be given by the

magnetic moment of the earth, which is the product of the volume of the

earth and its magnetization. The magnetic moment of the earth is equal to

8.3- 1025 cgsm units, or 8.3-1015 weber, m.* Such a magnetic moment is

equal to that of a sphere of nickel-aluminum alloy (alnico) with a radius of

about 500 km which is magnetized to the maximum. This example gives

some idea of the degree of magnetization of the earth. The magnetic poles

of the earth do not coincide with the geographical poles. The coordinates

of the north magnetic pole are _ = 74 ° north latitude, _ = 101 ° west longitude',

and the south magnetic pole, _ = 69 ° south latitude, _ = 143 ° east longitude.

The degree of magnetization of the earth can also be estimated by the

distribution of the magnetic field intensity at different points of the earth's

* A weber is the magnetic flux which, when linked with a single turn, generates an electromotive force of

] volt in the turn, as it decreases uniformly to zero in one second.
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surface. The magnetic field intensity at the magnetic equator is 0.35 oer-
steds, and at the magnetic pole, 0.65 oersteds.*

Moving northalong a magnetic meridian a distance of one km at middle

latitudes, the vertical component Z increases, and the horizontal compo-

nent of the magnetic field of the earth H decreases approximately by 3 to 5?.
At a height of 20 km, the horizontal component is lower than its value at

the earth's surface by only 1%, and at a height of 200km, by 10%. On the

average, the horizontal component decreases by 7 V for each kilometer of

height. With increasing height, the magnitude of the vertical component of
the magnetic field of the earth decreases also.

The magnetic field of the earth extends to 100,000 km for all practical

purposes.

tSO0_\_
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FIGURE17. Intensity of the earth's magnetic field as a function of the distance
from its center:

1- calculated variation of the magnetic field intensity; 2- intensity, measured
by the second rocket launched in the direction of the moon.

Instruments mounted on the first satellites detected a considerable

difference between the real magnetic field of the earth and the calculated

one (Figure 17). This is apparently due to strong electric currents tens

of thousands of kilometers from the earth. The difference is particularly
large at distances of 20,000 to 22,000kin from the center of the earth. No

satisfactory theory of the earth's magnetism has yet been formulated. The

world magnetic survey during 1964 - 1965 will result in more accurate data

on the distribution of the elements of the magnetic field of the earth over

its surface and in space.

The earth is surrounded by a gaseous envelope, the atmosphere. The

motion of spaceships starting from the earth takes place in the atmosphere,

low-orbit spaceships move in the upper layers of the atmosphere, and the

paths of ships returning from space pass through the atmosphere. Over-

coming the resistance of the earth's atmosphere requires additional energy

expenditures to put a spaceship into orbit. The earth's atmosphere causes

a considerable heating of the ship and tremendous overloads on a descending

spaceship. The following is a brief description of the earth's atmosphere.

* A field intensity of 1 oersted acts on a unit positive magnetic mass with a force equal to 1 dyne. A smaller
intensity unit is the gamma, ¥, equal to 0.00001 oersted.
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The atmosphere participates in the rotational motion of the earth about

its axis. In addition, it has a complicated motion with respect to the sur-

face of the earth, which results in a continual change of its physical state.

The atmosphere is a mechanical mixture of gases, for the most part

nitrogen, oxygen, and argon. In addition, it contains varying amounts of

water vapor and carbon dioxide, and negligible amounts of hydrogen, helium,

neon, xenon, krypton, ozone, as well as methane and oxidesofnitrogen. The

main gases constitute 99.97%, and the remaining gases only about 0.03% of

the atmosphere.

The following figures give some idea of the amount of gases in the earth's

atmosphere: the total weight of the atmosphere is approximately 5-1015ton;

if the entire atmosphere could be compressed to the density of water, then

the globe would be covered by a I0 m thick uniform layer of compressed

atmospheric gases. It has been found that the relative content of the main

gases remains practically constant up to heights of I00 to 120 km. The

absolute content of all the gases decreases with height. The atmosphere

is nonuniform in the vertical direction also with respect to its other physical

parameters: temperature, pressure, and so on (Figure 18).
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FIGURE 18. Vertical distribution of the pressure P, tem-

perature T, and density p according to measurements

from rockets made by the Central Aerological Observa-

tory oftheUSSR (TsAO) and from those made in the USA

Depending on the variation of its physical properties, the atmosphere is

divided into several layers, or spheres (Table 1).

The troposphere is the atmospheric layer whose physical properties are

mostly dependent on the earth's surface. A characteristic feature of the

troposphere is the drop of air temperature with increasing height, reaching

on the average 0.65°Cper 100mofheight. All the meteorological phenomena

are observed in the troposphere.
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Thehighestwindvelocitiesare observedin theuppertroposphere,1
to 2km belowthetropopause.

TABLE1, Basicand transitional layers of the earth's atmosphere

Basic layers (spheres)

Troposphere

Stratosphere

Mesosphere

Thermosphere

Exosphere ( the lower boundary)

Theoretical boundary of the

atmosphere ( according to
Smolukhovskii)

Mean heights of the upper
and lower boundaries, km

0--11

11--35

35 -- 80

80-- 800

800

(over the poles)

1000

(over the equator)

28,000

( over the poles)

42,000

(over the equator)

Transitional layers

Tropopause

Stratopause

Mesopause

Thermopause

The stratosphere is characterized by no temperature variation with

height.

The mesosphere is generally characterized by a considerable rise in

temperature with height in its lower part and fall of temperature in its

upper part. The composition of the main gases in the mesosphere is

approximately the same as in the lower layers of the atmosphere, but the

pressure is very low, varying from 2.5 mm Hg at the lower boundary to

0.01 mm Hg at the upper boundary.

Up to a height of 50 km there is an average rise of temperature of 3 to

4°C per km of height. At a height of 50 to 55 km the temperature is about

0 °. The upper part of the mesosphere is characterized by a temperature

decrease withincreasingheight. At a height of 80 kin, the temperature is

about - 70 °. Noctilucent clouds are sometimes observed in summer in the

upper part of the mesosphere, at heights of 82 to 85 km, indicating the

presence of air currents in the mesosphere.

The thermosphere is distinguished by a continuous rise of temperature

with height. It differs from the lower layers in other ways as well. The

oxygen in the thermosphere is in the atomic state. The disintegration of

oxygen molecules into atoms begins approximately at a height of 100 km

due to the ultraviolet radiation of the sun. Theoretical calculations show

that at heights above 110 to 120 km, the uncombined oxygen contained in the

atmosphere can be only atomic. Other gases in the thermosphere include

nitrogen, helium, and hydrogen.

One of the phenomena observed in the thermosphere is the aurora polaris,

a characteristic glow of the upper layers of the atmosphere due to the

corpuscular radiation of the sun. Under the action of the magnetic fieldofthe

earth, the flow of corpuscles is deflected toward the poles and, therefore,

the aurora polaris is usually observed at high latitudes. The aurora polaris

is formed at heights of 100 to 400 kin, and sometimes reaches heights of

1000 to 1200km. A study of aurorae polares may determine most of the

physical characteristics of the upper atmosphere.
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A characteristic feature of the thermosphere is the presence of a huge

amount of charged particles, ions. These ions cause the high electrical

conductivity of those sections of the thermosphere in which they occur in

their highest concentrations.

The upper layers of the atmosphere, having increased electrical

conductivity, are called the ionosphere. The ionosphere is divided into

four layers: D, E, F,, and F2 The first layer is at a height of 40 to 80kin.

It is characterized by the fact that it absorbs radio waves more intensely

than it reflects them. This is due to the sufficiently high air density at

these heights. The E,F,, and F2 layers are observed, on the average, atheights

of 100, 200, and 320km, respectively.

The ionospheric layers are not continuous, but consist of individual

ionized clouds. The origin of the ionosphere is mainly due to the corpuscular

and ultraviolet radiations of the sun. The layers differ in the concentration

of the charged particles and in some other characteristics.

The ionospheric layers reflect some radio waves completely, and pass
some others. The latter radio waves can be used for communication with

spaceships. For example, reliable communication was established with

the first Soviet rocket to the moon on the frequencies 19.997, 19.995, 19.993,

and 183.6 Mc, and withthe interplanetary station "Mars I", on the frequencies

922.76 and 183.6 Me.

The exosphere is the uppermost layer of the atmosphere. It is charac-

terized by a temperature increase with height and a very low pressure.

Therefore, favorable conditions are created at its upper boundary for the

escape of gases from the atmosphere. This occurs when the high tempera-

ture causes the thermal velocities of individual molecules to reach and

exceed the escape velocity for the given height. As a result of this, such

molecules leave the earth's atmosphere and go into interplanetary space.

The highest rate of the dissipation is observed for light gases and the lowest

rate --for heavy gases. Thus, for example, at a temperature slightly over

700 °, the time for complete dissipation of hydrogen is 4 years, and for

helium, 1.4.106 years.

Only recently a systematic study of the exosphere has begun, using

artificia] earth satellites and space rockets. The first of these attempts

has already led to very interesting and important discoveries. Thus, the

experience of the first three Soviet lunar rockets established that even at

large distances, the earth is surrounded by a highly rarefied atmosphere,

consisting of an ionized gas. This part was called by Soviet scientists the

geocorona. The concentration of ions 300km from the earth's surface is

1 to 2 million per cubic centimeter. In the geocorona it is only a few

hundred. For comparison, we recall that at the earth's surface the number

of molecules per cubic centimeter is expressed by a twenty-decimal number.

The geocorona is observed on the average up to a distance of 22,000 km

from the earth's surface. Its height depends on a number of conditions,

mainly the solar activity.

No ionized gas has been detected in interplanetary space at distances

over 22,000 kin. It is assumed that if there is ionized gas in interplanetary

space, its concentration would be considerably lower than several tens of

ions per cubic centimeter.

The geocorona is formed by hydrogen atoms constantly escaping the

earth's atmosphere. The escaping hydrogen is supplemented by the
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evaporationof waterfr(_mtheoceans,seas,andrivers. Accordingto
calculations,thelevelof theWorldOceanhasfallenby severalmeters
duringthegeologicalhistoryof theearthdueto suchevaporation.

Thus, theboundaryof spacecanbeconsideredto be22,000kinfrom the
surfaceof theearth. However,spacecraftcanmakeprolongedflightsat
lowerheights,downto 140to 150km, whereanearthsatellitecanexist
for approximately1to 2 orbits. Apparentlythis heightshouldbeconsidered
astheloweraltitudelimit for spaceflights.

Investigationsof theearth'satmosphereandof spacebymeansof
artificial satellitesandrocketsled to thediscoveryof theradiationbelts
of theearth. Theseareextensivezonesof chargedparticleswhosemain
sourceis thesun. Theearthis surroundedby acloudof high-energy
chargedparticles, heldby its magneticfield. It extendsovertheentire
earthandmaybeclearlydividedinto threebelts: internal, external,and
athird, or as it is sometimescalled, themostexternal(Figure19).
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FIGUP, E 19, Meridional cross section of the radiation belts of the earth:

1- internal; 2- external; 3- most external.

The high intensity of cosmic rays in the upper layers of the atmosphere

was almost simultaneously observed by the Soviet scientist S. N. Vernov

and the American scientist Van Allen from data of instruments mounted on

satellites. Van Allen observed the internal radiation belt, but due to limited

data and the fact that the first American satellites did not reach latitudes

higher than 35 ° very little information on this interesting phenomenon was
obtained. The results of the measurements from the third Soviet satellite

made it possible to determine the boundaries of the internal radiation belt,

to estimate the energy of its particles, and to observe in it longitudinal

asymmetry. These resulted in conclusions on the reason for its existence.

The discovery and investigation of the external radiation belt was made

by Soviet scientists by means of the third Soviet satellite and space rockets.

The report of the Soviet scientists S. N. Vernov, A.E. Chudakov, V.I.

Krasovskii, and others, "Investigation of the Cosmic Radiation and Magnetic

Field of the Earth and Moon," was awarded the Lenin Prize in 1960. The

discovery of the most external radiation belt was also made by Soviet

scientists.

What are the radiation belts ? The equatorial diameter of the external

belt is about 100,000km. Insidethis belt there is a cavity with a diameter

of about 40,000 km. The belt is symmetric with respect to the magnetic axis
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of the earth, and its meridional cross section (see Figure 19) has the form

of a sickle whose ends reach the upper layers of the atmosphere at geo-

magnetic latitudes of 50 to 60%

The internal belt is situated within the cavity of the external belt. It

extends latitudinally approximately 40 ° on both sides of the magnetic equator.

Its height is from some hundreds to 5 or 6 thousand kilometers over the

earth's surface /2, 13/.

The belts differ by the nature of their constituent particles: the external

belt has electrons with an energy of tens and hundreds of thousands of

electron volts, whereas the internal belt has protons with an energy of tens

and even hundreds of millions of electron volts.

The third belt of charged particles with relatively low energies is situated

approximately 40 to 80 thousand km from the earth. Electrons with an

energy from 200 to 20,000 ev have been detected in this belt. The particle

current density reaches a maximum in the center of this belt.

It is assumed that the most external belt originated from the penetration

of solar particles into the peripheral regions of the earth's magnetic field.

According to a modern hypothesis, the particles of the radiation belts

are trapped in the earth's magnetic field and move along the magnetic force

lines.

Recent investigations detected a region of increased radiation in the

southern part of the Atlantic Ocean, which is related to the magnetic anomaly

in this region. The lower boundary of the internal radiation belt descends

there to 250 to 300 km above the earth's surface.

According to the opinion of some scientists, the presence of radiation

belts is one reason for the nonuniform diurnal rotation of the earth.

It is possible to create artificial radiation belts of the earth by exploding

nuclear and thermonuclear devices in space. The nuclear devices exploded

by the USA on 20 and 30 August and on 6 September, 1958, in the southern

part of the Atlantic Ocean at a height of 480 km led to the appearance of an

artificial radiation belt between the internal and external belts. The

equatorial diameter of this radiation belt is about 16,000 kin. However,

such "scientific" experiments, carried out by the USA, hardly contribute

to the progress of astronautics.

According to the American press, a thermonuclear device, exploded in

the Pacific Ocean over Johnston Island in the summer of 1962, caused more

damage in the space near earth than the authorities admitted. The artifi-

cially produced radiation turned out to be so strong that it damaged the solar

batteries of three American satelites and discontinued radio communication

with them. The Atomic Energy Commission and the Department of Defense

concluded that the artificial radiation belt formed as the result of this

explosion is more intense than was previously assumed, and that it may

exist for many years.

The discovery of the radiation belts of the earth suggests that radiation

belts are also possible on other planets possessing a magnetic field. This

is of great importance in astronautics. The paths of spaceships should

normally pass outside zones with intensive cosmic radiation. The existence

of radiationless zones at the poles enables spaceships to leave the earth and

return to it from interplanetary space.

One may get an idea of the radiational danger in a space flight near the

surface of the earth under the lower radiation belt from the magnitude of

32



the total radiation dose received by our first astronauts during their flights.

These doses are given by the following figures /42, 43/ (in millirads_) •

Yu. A. Gagarin ......................... 1
G. S. Titov ............................ 10

A. G, Nikolaev ......................... 43

P. R. Popovich .......................... 32

V. F. Bykovskii ......................... 50

V. V. Tereshkova ........................ 30

These doses are very small. In fact, the first indications of radiation

sickness which do not affect work capacity appear in man when the radiation

dose reaches 45 to 90 rad. Severe radiation sickness begins at a dose of

90 to 180 rad /4/. A man normally receives a radiation dose of approxi-

mately 0.3 rad in chest irradiation. If the irradiation is received from

mobile ]<-ray equipment, the radiation dose is 2 to 9 tad. The annual

radiation dose received by a man from the luminous dial of a wristwatch

(at a distance of 0.3 m) is about 0.00004 rad. From the instrument panel

in an airplane cabin, containing up to a hundred luminous instruments, the

pilot receives an annual dose of up to 0.0013 rad /35/.

_5. Basic Physical Characteristics of the Moon and the

Peculiarities of its Motion

The moon, earth's natural satellite, is the large celestial body nearest

to us, and is denoted by the symbol _.

The mean distance from the earth to the moon is 384,400km, which is

60.27 radii of the earth. The diameter of the moon is 3473.4km (0.27 of the

diameter of the earth), its mass, 7.35-1025g(0.01 of the mass of the earth).

The volume of the moon is only 0.02 of the volume of the earth, and its

density is 3.34 g/cm s (0.606 of the density of the earth). Therefore, the

gravitational acceleration, and hence the weight of every object on the moon

is one sixth of that on the earth. The zero-height circular velocity for the

moon is 1.68km/sec, and the escape velocity is 2.36km/sec.

The eccentricity of the lunar orbit is small, averaging 0.0549. The

lunar orbit can therefore be considered practically circular. The inclina-

tion of the lunar orbit,is, on the average, 5°09 ' and the mean velocity of

the moon in its orbit is 1.02 km/sec.

The period of one revolution of the moon around the earth is called the

lunar month. The time interval during which the moon reaches its original

position with respect to the stars after one revolution is called stellar or

sidereal month. The time interval during which the moon reaches its

original position with respect to the sun, is called synodic month. The

motions of the sun and moon as seen from the earth are in the same direc-

tion, but since the moon moves faster than the sun, the synodic month is

longer than the sidereal month. The first is equal on the average to 29 days

12 hrs 44 min and 2.78sec, the second, 27days 7hrs 43 min and 11.5sec.

* A rad is a radiation unit corresponding to the absorption of 100 ergs in i g of tissue. A millirad is one

thousandth of a tad. One rad is equal to 1.12r (roentgen)
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The attraction of the sun, the nonsphericity of the earth, and, to a

much lesser extent, the attraction of the planets, give rise to complicated

perturbations, or inequalities, in the motion of the moon. The perturba-

tions are manifested in the continuous variation of the elements of the lunar

orbit. At the end of the past century, Brown, an American scientist, counted

751 inequalities. Of these numerous inequalities we shall mention only the

principal four.

1. Regression (backward motion) of the line of nodes.

The line of nodes of the lunar orbit rotates in the plane of the ecliptic in a

direction opposite to the motion of the moon along its orbit. The nodes

move in the ecliptic by 19.3 ° per year, as a result of which, in 18.6 years

they make a complete rotation with respect to the pole of the ecliptic. Thus

the moon has a new path among the stars each month.

2. Direct motion of the line of apsides. The ellipse of the

lunar orbit rotates in its plane so that the line of the apsides turns in the

same direction as the moon. This rotation has a rate of 40.7 ° per year,

making a complete rotation in 8.85 years.

3. Periodic oscillations of the inclination. The inclination

of the plane of the lunar orbit to the ecliptic varies from 4059 ' to 5°17 ' with

a period of 18.6 years.

4. Periodic oscillations of the eccentricity. The eccen-

tricity varies from 0.0435 to 0.0715 with a period of 8.85 years. This is

also the period of the variation of the semimajor axis of the lunar orbit
from 356,400 to 406,730km.

The inequalities in the motion of the moon lead to highly complicated

formulas for the calculation of its coordinates on the celestial sphere. Thus,

according to Brown's theory, the longitude of the moon in the ecliptic

coordinate system is given by an equation containing 665 terms, and the

latitude is given by an equation containing more than 300 terms.

The complicated character of the lunar motion suggests the difficulties

which scientists encounter when choosing and calculating flight trajectories

for automatic stations and lunar spacecraft to and about the moon.

It is believed that the moon once had a dense atmosphere, but that since

the escape velocity for the moon is low, the thermal velocity of individual

molecules of the atmosphere became equal to or exceeded it and such

molecules left the moon forever. The lower the escape velocity, the faster

a heavenly body loses its atmosphere, or, as is said, the faster the dissipa-

tion. For this reason, the moon is practically devoid of an atmosphere,

even though the ages of the earth and of the moon are the same in the opinion
of scientists.

According to the latest data, the density of the atmosphere at the surface

of the moon is 2.10 -*3 of the density of the lower layers of the earth's

atmosphere. There is no water on the moon.

The extreme rarefaction of the lunar atmosphere deprives the moon of

the protecting shell in which meteorites burn out and are pulverized, and

therefore the ]unar surface is continually bombarded by meteorites.

Since the moon has practically no atmosphere it is not possible to use

the braking property of the atmosphere to reduce the velocity of a spaceship

for landing on the moon. To accomplish this, quite powerful braking engines
will apparently be required.
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F r o m  the data  of space rockets ,  Soviet scient is ts  have established that 
the moon does not have any noticeable magnetic field, and consequently, 
no radiation belts. 

period of rotation about i ts  axis  is equal to the period of one complete 
revolution around the ear th  (i. e., is equal to a s idereal  month), and there-  
fore  only half of the lunar  sphere  is ever  seen f rom the ear th .  * 
( f rom selena,  the ancient name of the moon). 
par t  of the moon exis t  on which over  200,000 details of the lunar  sur face  
have been plotted. Of these, more  than 32,000 details have been named. 
A l l  formations having a diameter of more  than 50 m a r e  now drawn on the 
map of the visible s ide  of the moon. 

The sur face  of the moon has  been quite well studied. However, the 

The science studying the sur face  of the moon is called selenography 
Detailed maps  of the visible 

FIGURE 2 0 .  
crater Copernicus ( in  the center) 

Photograph of part of the lunar surface from the 

A charac te r i s t ic  feature  of the lunar surface is the annular mountains or 
The la rges t  c r a t e r  Grimaldi has a diameter  of 235 km, c r a t e r s  (F igure  20). 

and the smal les t  distinguishable i n  modern telescopes is 100 to 200m i n  

Actually, about 60% of the entire surface of the  moon is seen from the earth due t o  the phenomenon of 
libration, a slow tilting of the  moon with respect t o  some average position as a result of the ellipticity of 
Its orbit. the slight inclination of its rotational axis to  the plane of the orbit (l"32'). and some nonuniformity 
of the rotation about its axis. 
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diameter. The height of the annular banks of the craters reaches 300 to

7000m. Sometimes a sharp-edged mountain, called a central peak, rises

in the center of the crater. Even the unaided eye sees large dark spots of

circular form on the surface of the moon, which are the wide plains called

"seas." In addition, there are mountain ridges whose height reaches 7 to

8 kin; one mountain top is 9 km high.

A system of bright rays, diverging in all directions from some craters

(Tycho, Kepler, and others), is seen on the lunar surface. These rays
are several kilometers wide and intersect mountains and seas, sometimes

extending to distances of up to 5000km. Furrows and black fissures,

probably quite deep, are seen in many places on the lunar surface. A

fissure of average dimensions extends 100km, and is several hundred

meters wide and deep.

The reasons for these characteristic features of the lunar topography

are not clear yet, but two basic hypotheses exist on the formation of the

annular mountains. According to the first hypothesis, the annular moun-

tains are the result of grandiose eruptions of gases which once escaped

from the interior of the moon. According to the second, their origin is due

to the bombardment of the lunar surface by large meteorites.

Quite recently, the amateur astronomer M. M. Shemyakin noticed an

interesting regularity in the positions of the lunar craters. Some crater

chains lie alonga line close to an arc of a circle, and the area of each crater

is half the area of the previous one. The distance between them was also

found to obey a certain mathematical law. It is hoped that this discovery will

aid scientists to understand the secret of the origin of the lunar craters.

In recent years, astronomers have often observed various changes

oceurringon the surface of the moon. Thus, for example, in the last few

years the area of the crater Linn6 decreased by a factor of two. The crater

Algazen disappeared, leaving no traces; small craters formed on the bottom

of the crater Plato, and new, hitherto unobserved fissures have been

observed near the crater Messier. On the bottom of the crater Plato,

green-grayish spots of an unknown origin appear at sunrise, and in the crater

Eratosthenes these spots even appear tobe moving ]5/.

Thus, powerful processes take place on the lunar surface and in its

interior, but their character and causes are as yet unknown. A detailed

investigation by spaceships of the topography of the lunar side visible from

the earth will make it possible to obtain new data on this problem.

On 4 October, 1959 the third Soviet cosmic rocket was launched in the

direction of the moon. The automatic interplanetary station, especially

built for photographing the opposite side of the moon, orbited the moon

and, according to a precomputed program, photographed it. The images

obtained were transmitted to the earth via a special radioengineering

system.
The time chosen for the photographing made it possible to obtain pictures

of that part of the lunar surface invisible from the earth and of a small area

with known formations. The photographs of a part of the known region of the

moon allowed us to compare unobserved features on the opposite side of the

moon to those already known and in this way determine their selenographic

coordinates.

Analysis of the photographs shows that mountainous regions prevail on

the invisible part of the lunar surface, but there are very few seas similar

to those of the visible part. The pictures obtained of the opposite side of
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themoonenabledthefirst Russian atlas of the lunar surface and a lunar

globe. The optical reflections of the moon indicate that the lunar surface

is irregular. It is covered all over, including the plains, by numerous

irregularities, which cannot be seen from great distances. Until recently,

it was assumed that the lunar surface is covered by a dust layer from

several centimeters to tens of centimeters thick. However, according to

the latest data, the surface of the moon is a very light porous substance.

This fact was established as a result of the analysis of radio emissions of

the moon and was confirmed by calculations. It was established, for

example, that from 1.72 to 86 kg of meteorite dust falls annually on each

square kilometer of the earth's surface, and about 0.34kg should fall

annually on each square kilometer of the lunar surface. This amount of

dust, uniformly distributed over the lunar surface, produces a 1 cm layer

after 100 million years. If we take into account that the age of the rocks

forming the surface of the moon is 500 million years, then the dust layer

on the surface of the moon should be about 5 cm thick. However, the exis-

tence of a dust layer on the moon is now denied by a number of scientists.

Some scientists assume that the moon has a hot core in order to explain

the temperature rise discovered in the deep layers of the moon. Due to the

absence of an atmosphere, three times the amount of solar radiation falls

on a unit area of the lunar surface as on a unit area of the earth's surface.

During the two-week lunar day the surface of the moon, illuminated

by the solar rays, reaches a comparatively high temperature, and

during the long lunar night becomes extremely cold, due to the absence

of a protecting layer such as the atmosphere which preserves the

heat on the earth during the night. Thus, it can be affirmed in advance

that the temperature of the lunar surface undergoes extremely sharp

variations. To date the temperature in various places of the lunar surface

has been measured quite accurately.

Measurements carried out in one of the observatories made it possible

to obtain the following figures. The temperature in the central parts of the

full moon disk, i.e., at a point in direct sunlight, was found to be 134°C.

In the middle, between the center and edge of the lunar disk, it is 122°C,

at a distance of 0.75 r [r = radius of the moon] from the center of the lunar

disk, 102°C, at a distance of 0.9 r, 77°C, and at the very edge of the disk,

67°C. Theoretical values closely approximate these. The temperature of

the night side of the moon is about -150°C.

The second Soviet cosmic rocket sent to the moon, on which nine counters

to measure the radiation level near the moon were mounted, established

that the moon does not have radiation belts similar to the earth.

These are in general the unfavorable conditions which man will encounter
on the moon.

Much about the moon is now definitely known, but the rest is, for the time

being, pure guesswork. No doubt that the further development of science and

engineering as a whole, as well as the further progress of astronautics, will

considerably add to our knowledge of the moon.

The moon is the celestial body closest to the earth, and therefore it is

obvious that in the near future, manned spaceships will be directed to it

for a detailed study.

37



§6. The Inferior Planets

The planets of the solar system whose orbits lie within the orbit of the

earth are called the inferior planets, and those outside, the superior

planets. There are two inferior planets, Mercury and Venus.

The conventional designation of the planet Mercury is _.

The equatorial diameter of Mercury is 4720km, 0.37 of the earth's

diameter. Its volume is 0.050, and its mass 0.037 of the mass of the earth.

Its average density is 4.1 g/cm s (0.74 of the average density of the earth).

The gravitational acceleration on the surface of Mercury is 2.55 m/sec 2,

whieh is 0.26 of the gravitational acceleration on the surface of the earth.

The zero-height circular velocity for the surface of Mercury is about

2.Tkm/sec, and the escape velocity at the surface is 3.8km/sec.

The distance of Mercury from the sun varies widely from 46 to 70 million kin,

the mean being 57.9 million kin. The eccentricity of the orbit is almost 0.206.

The distance from the earth to Mercury varies from 82 to 217 million kin. Its

relatively small distance from the sun is the reason for the very high tempera -

ture on the illuminated part of its surface. The temperature at a point in direct

sunlight is+412°C. This practically corresponds to the melting point of zinc.

The mean linear velocity of Mercury in its orbit is 47.83 km/sec, the

sidereal revolution period is 87.97 days, and the mean synodic period is

115.88 days. The inclination of the orbit is 7°00' 14", and the period of

rotation about its axis is 87 days 23 hrs 16 rain. The period of Mercury's

rotation about its axis is equal to the period of its revolution around the

sun, and consequently Mercury always keeps the same side facing the sun,

as the moon does to the earth. The inclination of Mercury's equator to the

plane of its orbit is unknown.

Similar to the moon, Mercury has phases. The study of its spectrum

leads one to assume that the atmosphere of Mercury is extremely rarefied.

Mercury does not have any satellites.

The second inferior planet is Venus. Its conventional designation is 9.

Venus resembles the earth in many respects. Its equatorial diameter

is 12,374km, which amounts to 0.97 of the equatorial diameter of the earth.

Its mass is 0.826 of the mass of the earth, its volume 0.90 of the volume

of the earth, and its average density 5.1 g/cm 3 (0.92 of the average density
of the earth).

The gravitational acceleration on the surface of Venus is 8.83 m/sec 2,

which is 0.90 of the earth's gravitational acceleration. A man who weighs

70 kg on the earth will weigh slightly less than 63 kg on Venus. The zero-

height circular velocity for Venus' surface is 7.2 km/sec, and the escape

velocity at the surface is 10.2 kin/see.

The mean distance of Venus from the sun is 108.1 million kin; its orbit

has the smallest eccentricity of all the planets of the solar system, 0.007.

The minimum distance from the earth to Venus is only 40 million kin.

Similar to the moon and Mercury, Venus has phases. Venus is nearer to

the sun than the earth, and therefore receives from it slightly over twice

as much heat and light as does the earth. Venus does not have any satellites.

The mean linear velocity of Venus in its orbit is 34.99 km/sec, and the

angular velocity, l°36 ' per day. The sidereal period of revolution is

224.7 days and the mean synodical period is 583.92 days. The inclination

of the orbit is 3o23 ' 39'% and the inclination of the equator to the plane of

the orbit is not known accurately.
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A temperatureof -23°Chasbeenmeasuredonthedarkpart of Venus
/27]. According to radar measurements in the USSR and the measurements

of the American space probe "Mariner II", the temperature of the external

part of the Venusian atmosphere is about 600°C.

cannot always turn the same side to the sun, for

then be colder.

In spite of its relative closeness to the earth,

riddles. To this day it is stillunknown what the

is and what is the length of its day. The reason

This proves that Venus

its night hemisphere would

Venus hides on it many

rotational velocity of Venus
for this doubt is that the

surface of the planet is covered by a thick layer of clouds and a direct

determination of its rotational period by topographical details is therefore

impossible. Indirect methods of determining the rotational period lead

to highly contradicting results. According to the results of the radar

measurements by the Soviet scientists, made in 1961, the rotational period

of Venus was close to 11 terrestrial days. In 1963 the Soviet scientists

A. D. Kuz'min and A. E. Salomonovich presented the astronomical journal of

the Academy of Sciences of the USSR (Vol. XL, issue 1) with the following

data, "The true (stellar) rotational period of Venus is 69 terrestrial days

and the solar period is 98 days. These data were obtained from analysis
of the radio emission of Venus in the millimetric and centimetric wave

bands."

Venus has a dense atmosphere whose existence was for the first time

proved by M. V. Lomonosov from analysis of the rare phenomenon observed

by him on 26 May, 1761 --the passage of Venus over the solar disk. Until

recently, neither oxygen nor water vapor had been observed in the atmos-

phere of Venus. Only considerable amounts of carbon dioxide and traces

of nitrogen and its compounds with oxygen were seen. The absence of free

oxygen in the Venusian atmosphere indicates the absence of a thick vegeta-

tion. It is assumed that the conditions on Venus are close to those which

existed on the earth before life appeared on it.

Recently a report appeared in the Soviet press that molecular oxygen

has been detected in the upper layers of the Venusian atmosphere. This

discovery was made by V. K. Prokof'ev of the Crimean Astrophysical Obser-

vatory on the basis of unique spectra of Venus, obtained on a large solar

telescope and a special spectrograph.

It is thus now established that there is carbon dioxide, oxygen, and

nitrogen in the Venusian atmosphere. The presence of nitrogen was

discovered by analysis of the spectrum of the night-sky glow of Venus,

obtained by the Soviet astronomer N.A. Kozyrev. This fact compels us to

approach the problem of life on Venus in a new way; it is now assumed that

organic life exists on this planet.

By means of modern telescopes it is possible to distinguish details

approximately 12 km wide on the surface of Venus, but in view of the dense

cloud cover, we do not know the topography of Venus. However, some

scientists believe that the surface of this planet is covered by a continuous

ocean.

In view of its relative closeness, Venus is a very tempting object for

investigation by spacecraft.
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§7. The Superior Planets

The superior planets of the solar system in the order of their distance

from the sun are: Mars, Jupiter, Saturn, Uranus, Neptune, Pluto. The

conventional notation of the superior planets is: Mars-- _, Jupiter-- 2+,Saturn

-- _ ,Uranus -- _,Neptune -- _ and Pluto --l_ (PL). The physical charac-

teristics of these planets and the elements of their orbits are given in

Tables 2 and 3.

TABLE 2. Physical characteristics of the superior planets of the solar system

Name

of

planet

Equatorial
diameter Density ._ .

g8
m

4<3

" o

0.84 6,889 1:105 0.187 0.108 0.69 3.8 3.73

11.14 142,113 1 : 16 t,298 314.8 0.28 1.38 25.9

9.4 119,915 1:11 745 95.2 0.13 0.72 11.09

4.0 81,028 1:19 63 14.6 0.23 1.3 8,24

4.3 54,885 1:40 78 17,3 0.22 1,2 11.18

0.46 5,870 ? 0.098 < 1 ? _ ?

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

Cosmic vel-

ocities for

the surface, _U
km Isec _ .

3.84 8.0 +'_0 _

43.5 61.0 - 140:

26.0 i36.7 - 180 °

15.3 21.6 - 180 °

17.0 23.8 -210 °

? ? -220'

26_45 '

98_00'

29°36 ,

* Disregarding the centrifugal torce. On Jupiter' s equator the gravitational force is reduced by 9%, on

Saturn's equator, by 16%.

Of the superior planets the most studied is Mars. As the eccentricity

of its orbit is relatively large, the distance from Mars to the sun varies

within wide limits --from 206.6 million km to 249 million km. The distance

from the earth to Mars varies from 55.5 million km to 400 million kin.

Mars is nearest to the earth at the time of oppositions, which occurs

approximately every two years. Every 15 or 17 years Mars is in so-called

great opposition, when opposition and perihelion nearly coincide. For this

reason it comes particularly close to the earth. The last great opposition

of Mars was in 1956; the next will be in 1971.

The Martian days, as seen from Table 3, are only slightly longer than

the terrestrial ones. The inclination of Mars' axis to the plane of its orbit

is almost the same as that of the earth (about 65_), and therefore the annual

change of seasons on Mars and the illumination conditions in different

seasons are approximately the same as on the earth, but the Martian year is

almost twice as long as the terrestrial one, and due to its remoteness from

the sun, Mars receives only from 36 to 52% of the light and heat which the

earth receives.

The science studying the surface of Mars is called areography. ':' Many

stable details are observed on its surface which make it possible to draw a

* From the Greek name of Mars-- Arcs.
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quite detailed aerographical map. The smallest of the details on the

Martian surface observable from the earth with a modern telescope is about

16 km wide.

Investigations have shown that there areno large mountains on Mars, its

surface is very smooth and even. If there are elevations, they are not

mountains, but rather plateaus with a height of no more than 1000 m. Four

types of large surface details are observed on the disk of Mars: polar caps,

"seas, " "continents, " and "canals" (Figure 21).

The polar caps are white spots on the poles of the planet. These forma-

tions are highly variable; they decrease with the arrival of the Martian

summer and increase in winter. The polar caps are possibly a thin ice crust

only several centimeters thick /27/.

If the polar ice of Mars were melted, all the resulting water would

constitute a lake no greater than Lake Lagoda. * Water has also been

observed in the Martian atmosphere. If there are open water basins in the

equatorial regions of the Martian surface, then, according to some calcula-

tions, their diameter does not exceed 300 m.

The Martian "seas" are darker than the whole surface of Mars, their

dimensions and color depend on the Martian season.

The "continents" are huge formations on the Martian surface, reddish-

orange in color, extending over approximately two thirds of its surface.

Most probably, these are deserts with a soil stained by ferric oxides.

The Martian "canals" are regular thin lines intersecting the reddish

surface of the "continents" and "seas." The Martian canals were

discovered by the Italian astronomer Sciaparelli in 1877 during one of the

great oppositions of Mars. He is the one who proposed the idea that the

network of the Martian canals, striking by its rectilinearity, is a gigantic

irrigation system, constructed by intelligent inhabitants. Later, at the

intersection places of the canals enigmatic dark circular spots, oases,

were discovered. As many as seventeen canals converge into some of

the oases. Seasonal variations of the canals have also been observed.

With the arrival of the Martian winter, the canals become faded and many

of them completely disappear. At the beginning of the spring they reappear.

First the canals which are situated close to the thawing polar cap become

noticeable followed by the more remote ones. The darkening of the canals

goes from the pole to the equator. In the equatorial belt of Mars, where

one darkening is replaced by another, the canals are always visible.

In 1924 scientists succeeded in photographing the canals of Mars and

making the first photomap. In 1939 hundreds of photographs of Mars were

obtained on which about 500 canals were observed. The total number of

canals discovered exceeds 1000. The photographs also showed seasonal

variations of the canals.

Some scientists assume that there is vegetation on Mars. The opponents

of this assumption refute this possibility with a series of quite convincing

arguments. For example, the green pigment of terrestrial plants very

strongly scatters infrared rays, and those places on Mars which were con-

sidered a plant cover do not display this property. The spectrum of the

terrestrial green is characterized by a wide dark band in the extreme red

rays, the absorption band of chlorophyll, which is not observed in the spec-

trum of Mars.

* [Lake Lagoda has an area of about 7000 sq. m. ]
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The Soviet scientist G. A. Tikhov, studying terrestrial plants in severe

high-mountain conditions, i.e., i n temperature conditions approaching

Martian conditions, succeeded in proving that by prolonged adaptation, the

vegetation of Mars could acquire properties other than those known of the

terrestrial flora. The study of the Martian vegetation marked the birth of
a new science -- astrobotanics.

An atmosphere is observed on Mars, but the atmospheric pressure at

the surface is small, from 100 to 200mm. This pressure is observed on

the earth at a height of 15 to 20kin. The composition of the Martian

atmosphere has not been accurately established. However, much nitrogen

and some carbon dioxide have been observed. As a result of observations

of Mars and the study of spectrograms, Professor N. A. Kozyrev succeeded

in proving the existence of water in the form of ice and snow.

The lower gravitational acceleration on the surface of Mars as compared

with the earth leads to an interesting phenomenon. The pressure and density

of the atmosphere fall off more slowly with increasing height than on the

earth. At a height of approximately 25 kin, the pressure of the Martian

atmosphere is equal to the pressure of the terrestrial atmosphere at this

level. At large heights the pressure and density of the Martian atmosphere

exceed those of the terrestrial atmosphere. Consequently, spaceships

flying to Mars will experience a stronger deceleration in the upper layers

of the Martian atmosphere than in the upper layers of the terrestrial atmos-

sphere, and therefore the descent to the surface of Mars will differ from

the descent to the earth.

From photographs of Mars made during the opposition of 1939, Professor

N. N. Sytinskaya obtained the following data on the Martian atmosphere. The

total mass of gas per unit area of the Martian surface is .22 times that on

earth. A mercury barometer on the surface of Mars would show a pressure

of 170 mm of Hg,' and an aneroid barometer (whose readings depend not only

on the amount of gas, but also on the gravitational force), only 65 mm of Hg.

At this pressure, water boils at 43°C.

The climate of Mars is more severe than that of the earth. This is due

to extreme rarefaction of the atmosphere and the greater distance of Mars

from the sun. On the equator of Mars at about midday, the temperature

reaches 5 to 20°C. At night the temperature falls below 0 ° and at dawn

reaches -46°C. In winter, near the southern pole, the temperature is

thought to be -60°C.

Mars has two satellites, discovered in 1877 by the astronomer Hall.

The nearest satellite, Phobos, has a diameter of only 16 kin. It completes

a revolution around the planet in 7 hrs 39 min 14 sec, i.e., its rotation is

considerably faster than the rotation of Mars about its axis, and therefore

Phobos rises above the horizon of a Martian observer on the west, moves

against the diurnal motion of the stars and sets in the east. Such a

motion of a planet's satellite is at present the only known case in the

solar system. The mean distance of Phobos from the surface of Mars is

9376 kin. The second satellite, Deimos, has an even smaller diameter,

only 8 kin. The distance from the center of the planet to Deimos is 23,500 km.

After analyzing the motion of the Martian satellites, the Soviet scientist

I. S. Shklovskii suggested that they are of artificial origin.

It is clear that, like the moon and Venus, Mars will soon be an object

for study of automatic interplanetary stations, and later of spaceships.
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The beginning of this study was set by the launching of the Soviet automatic

interplanetary station "Mars I" on 1 November, 1962.

The planets Jupiter, Saturn, Uranus, and Neptune have huge dimensions

as compared with the earth. They are called giant planets. The most

massive of them is Jupiter. Its mass is 318 times, and its volume 1300

times the mass and volume of the earth, but the average density is almost

one-fourth the density of the earth. Varying belts, parallel to the equator,

which were later recognized to be clouds, have been observed on the surface

of Jupiter.

By spectral analysis, it has been established that the atmospheres of all

the four giant planets consists of ammonia and methane (marsh gas). The

temperature of Jupiter's atmosphere is very low (from -100 to -140°C).

Jupiter rotates very rapidly about its axis, not as a solid body, but by
"zones." Each zone has its own rotational velocity. Jupiter's axis of rota-

tion is almost perpendicular to the plane of its orbit, and therefore there

is essentially no change of seasons on this planet.

Jupiter and the other giant planets are covered by dense clouds, and

hence reliable data on the character of their surfaces and their internal

structure are not available. It is most probable that a thick layer of ice

and frozen gases lies under the cloud cover of these planets, and that the

internal part is a solid nucleus. The low average density of the planets is

apparently due to their extensive atmosphere. It is also assumed that the

giant planets contain much hydrogen.

At present, 12 satellites of Jupiter are known. The names and relative

dimensions of the satellites are shown in Figure 22.

On Saturn, cloud belts are less noticeable. Their color is mainly brown.

Saturn is the second largest planet. The form of the planet in a telescope,

the temperature of its atmosphere, and its rotation indicate that the physical

structure of the two largest planets is almost identical. The axis of rotation

of Saturn is inclined at an angle of 63 ° to the plane of its orbit, and therefore

Saturn shows a change of seasons.

The peculiarity of Saturn is its ring, being a unique formation in the

entire solar system. The ring is situated in the plane of the planet's equator

but does not touch the planet. Its dimensions are tremendous: the external

radius of the ring is 137.5 thousand km, which is 2.3 radii of the planet;

the thickness of the ring is not more than 15 to 20km.* It is assumed that

the ring has a meteorite structure. The sizes of the ring particles vary

from tenths of a micron to tens of centimeters.

Through strong telescopes the ring is seen to consist of two parts. The

interval between the rings is about 5000km. The mass of Saturn's ring is

estimated to be 1127,000 of Saturn's mass.

Nine satellites of Saturn are known (see Figure 22). The satellites are

situated at distances from 185,000km to 12.9 millionkm from the center of

the planet.

On the greenish disk of Uranus, it is almost impossible to distinguish

any details. The axis of rotation of Uranus is inclined to the plane of its

orbit at an angle of only about 3 °. This leads to a very strange and unique

phenomenon in the solar system. Uranus always revolves around the sun

almost "lying on the side." As a result there is a very peculiar change of

seasons, and the "(lay" and "night" may last for several years. Five

satellites of Uranus are known.

* According to other data the thickness of Saturn's ring is considerably smaller.
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FIGURE 21. Appearance of Mars on a color photograph 



It is also impossible to distinguish any details or spots on the disks of

Neptune and Pluto, discovered in 1930, and we still know very little about

these planets.
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FIGURE 22. Relative dimensions of the satellites of

the planets

Flight to the superior giant planets is a remote prospect. Its accom-

plishment requires, first of all, the development of engines capable of

giving the spaceship considerably higher velocities than may be achieved at

present. However, this is not the only difficulty preventing flights to the

giant planets. Such a flight requires overcoming the belt of minor planets,

the asteroids.* The return flight requires tremendous energy expenditures,

as the escape velocity for the nearest of the giant planets, Jupiter, is

61km/sec, about 5 times that for the earth. Trajectory correction and the

necessity to transmit scientific information from such spaceships to the

earth requires the development of super-long-distance space-communication

systems. In addition, it is necessary to develop methods for protecting

* The asteroids are discussed in the next section.
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the astronauts from the extremely low temperatures on the surface of these

planets and from what is perhaps more complicated, the tremendous gravi-

tational force. The gravity acceleration on the surface of Jupiter is

25.9 m]sec 2. A 70-kg astronaut will weigh on the surface of this planet

almost 186 kg.'
However fantastic the achievements of science and engineering, however

great their possibilities, it is hardly possible to expect that man will visit

these planets. Apparently, they will be studied only by means of automatic

interplanetary stations and automatic stations with scientific instruments

landed on their surface. However, this too is a very interesting and

complicated scientific and engineering problem.

These are in short the characteristics of the superior planets of the solar

system.

._8. Minor Planets (Asteroids), Comets, Meteor Streams,

and Meteors

The orbits of the minor planets, or asteroids, lie mainly between the

orbits of Mars and Jupiter, although some of them, for example Hermes,

approach the orbit of Venus at perihelion, and others (Icarus) even intersect

the orbit of Mercury (Figure 23). Most of the minor planets are about

2.5 a.u. from the sun.

_,_o\\?.._. --..._. .... Hermes

le_ros

FIGURE 23. Orbits of some minor planets (asteroids)

By 1 January, 1953, 1586 minor planets were known. It is assumed that

their total number exceeds 50,000. For the overwhelming majority of the

minor planets, the orbit eccentricity is small, but in the case of some the

eccentricity is very large (for example 0.83 in the case of Icarus).

The largest of the minor planets, Ceres, is 770km in diameter has a

mass approximately 1/8000 of the mass of the earth, and the smallest of

the known minor planets have a diameter of about 1 km and, by their

dimensions, approach the large meteorites (Figure 24).
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The short-period oscillations of the luminosity of many minor planets

indicate that they rotate and that they have an irregular geometric form.

Some minor planets approach closer to the earth than all the other

celestial bodies, excluding the moon. Thus, Hermes reaches only

600,000km from the earth, Apollo, 5,000,000 kin,

FIGURE 24. Dimensions of some

large asteroids as compared with

the moon

Amur, 15,000,O00km, and Eros, 23,000,000kin.

These and some other asteroids may serve in

the near future as objects of study by means

of automatic interplanetary stations.

Comets are the most astonishing members

of the solar system. Their geometrical

dimensions are very large, sometimes even

larger than the sun. Comet tails extend over

many hundred million kilometers. (In the

case of one of the observed comets, the tail

extended over 900,000,000km.) The mass of

comets is small, and therefore their density

is negligible. The mass of the most "massive"
comet does not exceed 10 -1° of the mass of the

earth, and its nucleus has a diameter equal to several tens of kilometers.

According to the latest data, the densest part of a comet, its nucleus,

constitutes a single body of small dimensions. It contains stony and ferrous

materials, as well as gases (methane, ammonia, carbon dioxide, cyanogen,
and others) in the solid state.

Comet orbits have, as a rule, large eccentricities, as well as large

inclinations to the plane of the ecliptic. Comets move both in the direction

of the general motion of the planets, and in the inverse direction. Their

revolution periods around the sun are also diverse. Forty comets with

periods from 3 to 76 years are known, and about 40 comets with periods of

about 200 years.

Meteors, or failing stars, are seen as visual phenomena in the earth's

atmosphere, flashes caused by small particles, meteoric bodies, entering

the atmosphere of the earth at huge velocities. These velocities at the

moment of encounter with the earth's atmosphere relative to the moving

earth vary from 13 to 70km]sec. Heated by the friction with the air, the

meteoric bodies become incandescent and pulverize in the atmosphere. The

glow occurs mainly at heights of 50 to 130 km from the earth's surface.

The earth encounters, in 24 hours, 75 million meteors which are visible

at night to the unaided eye. The total number of meteors, including the

faintest, apparently amounts to hundreds of billions.

If the meteor is sufficiently large, it produces in the atmosphere a very

rare phenomenon called a bolide. A bolide is observed in the form of a

large brightly luminous sphere with a long trail. When the meteor has

considerable mass and relatively low velocity of encounter with the earth,

the mass of the meteor has no time to disintegrate completely in the air.

The remaining part of the meteor falIing to the surface of the earth is called

a meteorite.

It had been thought that not more than 1000 tons of meteoric material

falls annually on the surface of the earth. Data obtained from artificial

earth satellites made it possible to conclude that the daily "dose" of

meteoric material arriving at the surface of the earth is considerably larger,

equal to about 30,000,000 tons.
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When the earth's orbit intersects the orbit of a shower of meteoric

particles, one observes a meteor stream. The particles forming the

meteor showers move in elliptical orbits around the sun. The origin of

these showers is connected with the disintegration and scattering of comets

in space.
Some meteor-shower orbits are known and have been studied (Table 4).

TABLE 4. Some data on the basic constants of meteor streams

Stream

Quadrantids

Lyrids

v,- Aquarids

[_- C assiopeids

I_ -Aquarids

a -Capricornids

Perseids

Orionids

Southern Taurids

Northern Taurids

Leonids

Geminids

Ursids

Date of stream

maximum

3 January

22 April

4 May

27 July

30 July

1 August

12 August
22 October

1 November

8 November

19 November

13 December

2'2 December

Particle velocity

with respect to the

earth, km/sec

42.4

49.1

67.0

43.0

25.1

60.3

67.8

30.2 _
31.5 )

71.7

36.4

31.2

Hourly number of
meteors at the

maximum

40

io

36

14

55

10

6

8

60

10--20

The major planets, mainly Jupiter, exert a disturbing influence on

meteors, modifying their orbits. This may cause the earth to miss some

of the previously known meteor showers and, on the contrary, to meet with

a previously unobserved shower.

In recent years, radar has been used for observing meteors and meteor

streams. As a result some new meteor streams have been discovered.

Besides meteor streams, single meteors, called sporadic meteors, are

also encountered.

Meteors are a serious hazard for spaceships. Sporadic meteors whose

paths cannot be taken into account in choosing and calculating the trajectory

of a spaceship are a particular danger. Encounter with meteors may result

in destruction of the hermetic sealing of the cabin and damage to the ship's

equipment.

According to recent data, the velocities of meteoric particles within the

solar system reach 50 to 75 km/sec.

The masses and dimensions of meteoric bodies vary from microdust

particles to meter-size chunks of stone or metal. The average density of

meteoric particles, according to the opinion of some scientists, is 3 to

3.4 g/cm s.

The meteor danger in a space flight is estimated by the probability of

the spaceship encountering meteors of a given mass and by the piercing

power of the meteors. The mean time, in seconds, between two successive

encounters of a spaceship with meteors of a mass equal to or larger than

M can be determined by the formula /28/

/_ 2.10is M
SVav
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where M is the mass of the meteor, in g; S is the area of the midship cross

section, into2; Vav is the average meteor velocity, equal to 30,000 to 50,000
m]sec.

For example, if we take a comparatively small cross section of the

spaceship, 1 m 2, then the probability of the spaceship encountering meteors

of various masses will be: with meteors of mass 2.5 • 10 -9 g and more, once

in 1.5 days; with meteors of mass 2.5 • 10 -7 g and more, once in 5 months;

with meteors of mass 2.5 • 10"Sg and more, once in 39 years.

The probability of encountering larger meteors is negligibly small. A

spaceship with the cross-sectional area of 1 m 2 may encounter a meteor of

a diameter of 1 mm once in 2500 years, and a meteor of a diameter

of 5 mm, once in 330,000 years. As the cross-sectional area of the space-

ship S increases the probability of encounter with meteors increases, and

the time interval between two successive encounters with meteors of the

same mass decreases, as seen from the formula.

The penetration depth of meteors into the metallic shell of a spaceship

is 8 to 20 diameters of the meteor. Appreciable destructions of the shell

can be caused by meteors with a mass not less than 2.5 • 10 -7 to 2.5 • 10 -5 g,

but, as was already said above, the probability of encountering such

meteors is comparatively low /28/.

Thus, we can draw the following general conclusion on the meteor danger

to space flight: for spacecraft with a small cross section and short flight

duration, the meteor danger is small; for spaceships intended for prolonged

flights to the depths of the universe, the meteor danger increases due to the

large cross-sectionalarea and the long flight duration. Thus, if the cross-

sectional area of the spaceship will be equal, for example, to 10 m s, then

the above-given flight time for one encounter with meteors of a given or

larger mass should be reduced by a factor of 10. But for prolonged space

flights, ships with an even larger cross-sectionalareawill apparently be

built. Consequently, it is necessary to find methods for combating the

meteor danger, and to develop effective systems of protection.

New interesting data on the distribution of meteoric matter in the space

beyond the earth's orbit have been obtained from the automatic interplanet-

ary station "Mars I." At a distance of 6000 to40,000km from the earth,

"Mars I" intersected the meteor swarm of the Taurids. Its instruments

then recorded approximately one impact of a meteoric particle in two

minutes. At a distance of 20 to 40 million km from the earth, it intersected

another, as yet unknown and unobserved, meteor swarm. There too,

approximately the same density of meteor bodies was recorded.

Much work is still necessary to estimate more accurately the meteor

danger and to develop effective protection for future astronauts.

Are there other planets in the universe in addition to those which revolve

around the sun ? Do there exist "earths " about other stars inhabited by

intelligent beings ? Are the solar system and the earth a lucky exception in

the infiniteuniverse? These problems have interested scientists and served

as a subject of hot debates, discussions, and from time to time, fantastic

assumptions. For a long time only guesses and assumptions were made

regarding the existence of other planetary systems. For example, Bruno

Giordano [1548--1600] proposed the idea of the existence of other stars, and

an infinite number of "earths," inhabited by intelligent beings.
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Beginningin 1937a numberof astronomers,includingtheSovietscientist
A.N.Deich,observedsmall irregularities in themotionof somestars. It
wasfoundthat thesestars movein spacealongcomplicatedcurvesasthough
slightlymovingfrom sideto side. Thispeculiarityin themotionof stars
canbedueonlyto themotionof their satelliteplanets,whoseattraction
causesthebendingof thestar trajectories. Calculationsshowedthatthe
massesof thesatellitesof thesestarsare similar to themassesof the
majorplanetsof thesolar system.

Investigationsshowthatthesunandsomeotherstars haveapproximately
thesamestellar ageandasimilar temperatureof their externallayers.
Thusit maybeassumedthatplanetsrevolvearoundthem. Therearevery
manysuchstars, evenin thepartof theuniversewecansee, andtherefore
thenumberof planetarysystemsshouldalsobelarge. Bythecalculations
of someastronomers,for eachonemillion stars, thereshouldbeonthe
averageoneinhabitedplanetarysystem,andthis meansthatin theGalaxy
thereare about150,000planetarysystemswherelife exists.

It maybethatoneof these"earths" is the invisibleplanetof acompara-
tively closestar "Cygnus-61," situatedonlyten light yearsfromus.

Thepossibilityof life onotherplanetarysystemsis thegreatestriddle
of theuniverse. Obviouslymuchtimewill passbeforemankindwill obtain
directproofsof thecorrectnessof theassumptionsmade.
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ChapterII
TRASECTORIESOFCOSMICSHIPS

1. CelestialMechanics-- theScienceof theLawsof
Motionof CelestialBodiesandSpaceships

All celestialbodiesare incontinuousmotion. Theplanetsorbit thesun
andare in turnorbitedby their satellites. Thesunalsorevolveswith
respecttothecenterof theGalaxy.

All thesemotionsarecausedbyonebasicpropertyof matter, themutual
attractionof physicalbodies. This propertyis expressedbythelawof
universalgravitation. It is naturalthat themotionof artificial celestial
bodies,spaceshipsflying by inertia, shouldbegovernedbythesamelaw.

Thestudyof themotionof celestialbodiesdueto their mutualattraction
is thescienceof celestialmechanics,knowledgeof whoseelementsis
thereforeessentialto explainthemotionof spaceships.

Themovementof a bodycanberepresentedbythree independentmotions
--rectilinear motionof thecenterof inertia, rotationaboutthecenterof
inertia, anddeformationof thebody. Therectilinear motionof celestial
bodiesis theprincipalsubjectof celestialmechanics.

The "n-bodyproblem"arising in this studycanbeformulatedasfollows:
determinethelawsof motionof n point masses, attracting each other by

the law of universal gravitation. The general solution is complicated.

Newton found a simple solution for the problem of two bodies, but for three

bodies this is impossible, as the unsuccessful efforts of the greatest 1 8th

and 19th century mathematicians indicate.*

But the lack of a complete solution of the n-body problem is not an

obstacle to study of the motion of celestial bodies. In almost all practical

cases, the attraction of one body far exceeds the attraction of all the

remaining bodies. Thus, for example, the dominating factor in the earth's

motion is the attraction of the sun, the dominating factor in the motion of

the moon and of the earth's satellite spaceships is the attraction of the earth,

and so on. Therefore, by taking into account only the attraction of the

dominant body, i.e., solving the problem of two bodies, a first approxima-

tion to the actual motion of the body is obtained. This first approximation

is called unperturbed or Keplerian motion. The study of unperturbed motion
is the basic problem of celestial mechanics.

To obtain the true motion, it is necessary to take into account the

influence of other bodies which was disregarded in the analysis of unperturbed

motion. The influences of other bodies on Keplerian motion are called

perturbations, and the corresponding branch of celestial mechanics is called

the theory of perturbations.

* Particular three-body problems can be solved comparatively simply. See, for example, /41/.
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In connectionwith therealizationof spaceflights, newandcomplicated
problemsarisein celestialmechanics,suchasthestudyof perturbations
in themotionof artificial satellitesof planets,whichmoveat small
distancesfrom thesurfaceof theplanets;thetransferof spaceshipsfrom
oneorbit to another; themotionof spaceshipswhoseorbitspasssucces-
sivelyneartwoandmorecelestialbodies,etc. Until theseproblemsare
solved,further developmentof astronauticsis impossible.

Thelawof universalgravitationwasfor thefirst time formulatedby
IsaacNewtonin hiswork "MathematicalPrinciplesof NaturalPhilosophy"
(1687). His discoverywasbasedonseventeenth-centuryacheivementsof
astronomyandmathematics,andin particular, onthelawsof planetary
motion,obtainedbetween1609and1619byKepler.

Accordingto thelawof universalgravitation,theforceof mutual
attractionof twobodiesis directly proporitionalto theproductof their
massesandinverselyproporitonalto thesquareof thedistancebetween
them:

F=f Mrn
r_

where M is the mass of the first body; m is the mass of the second body;

r is the distance between them; [ is a factor of proportionality, called the

gravitational constant; in the C. G. S. sytem, [ = 6.67 • 10 -8 cmS/g- see 2.

2"he law of universal gravitation made it possible to predict with

unprecedented accuracy even the smallest peculiarities in the motion, not

only of celestial bodies of the solar system, but also of twin and multiple

stars. Only one case of undoubted discrepancy remained for some time a

riddle, for the observations of the annual motion of the perihelion of

Mercury yielded a value approximately 0.4" larger than the theoretical.

However, even this descrepancy was later explained.

We now know the laws of mutual attraction of celestial bodies, but the

nature of the gravitational forces remains to this day largely unexplained.

Newton made the assumption that gravitation is transmitted mechanically

from one body to another by means of a special medium, "ether", which

fills the whole space between bodies and penetrates into all bodics; but this

assumption and the theory later proposed on mechanical transmission of

the action of some bodies on others could not satisfactorily explain all the

features of gravitation.

One fact in particular remained unexplained: that gravitation appears

instantaneously; as soon as the bodies change position, the forces acting

on the bodies vary immediately.

If gravitation is transmitted mechanically by a medium, then, naturally,

the assumption of a finite velocity of propagation of gravitation arises.

However, in the observed motions of celestial bodies no deviations from the

calculated position due to a finite velocity of propagation of gravitation has

been detected.

Laplace attempted to calculate the miminum propagation velocity of

gravitation, when the corrections for the finite velocity are so small that

they cannot be observed in the motion of celestial bodies. It turned out that

in this case the propagation velocity of gravitation should exceed the velocity

of light by at least a factor of 1 million. Thus, mechanical theories cannot

explain the nature of this rotation.
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TheGeneralTheoryof Relativitydevelopedbytheoutstandingscientist
AlbertEinsteinbroughtaboutprofoundchangesin theconceptof spaceand
time, of themotionof materialbodies,andof gravitation. This wasthe
nextstepin theknowledgeof thelawsandnatureofgravitation.

In classicalmechanics,thebasiclawsof whichwereformulatedby
GalileoandNewton,thereis nomutualrelationbetweenspace,time, and
thephysicalbodiesin thespace. Anyprocesstakingplacein spaceis
measuredbytime, whichflows rigorously, uniformly,andindependently.
Thepropertiesof spaceremainunchangedandindependentof thepresence
ofphysicalbodiesin it. In this space,theEuclidiangeometryis true: the
shortestdistancebetweentwopointsis astraightline; light rays propagate
alonga straightline; thegeometricaldimensionsof bodiesandtheir form
areunchanged.Themassof bodiesis alsoconstant.

TheTheoryof Relativityshowsthattheseconceptsonlyapproximately
reflect reality andare sufficientlyaccurateonlyif thevelocityof thebodies
is lowcomparedwith thevelocityof light. In reality, a profoundmutual
relationexists in naturebetweenspace,time, andmatter.

Thepathof a bodymovingby inertia in spaceis curved,as is thepropa-
gationof light rays. Thecurvatureofthepathis determinedbytheattrac-
tionof celestialbodies. Thus,thegeometryof spaceis determinedbythe
positionsof thephysicalbodiesin it.

Spaceis homogeneousonlyif materialbodiesareabsentfrom it. The
real nonuniformityof space,its "curvature," is perceivedasgravitation.
Accordingto theTheoryof Relativity, gravitationis simplya manifestation
of thespace-timecharacterof theworld.

Thelawsof gravitationfollowingfrom theGeneral Theory of Relativity

reduce to Newton's law as the ratio of the body's velocity to the velocity of
light decreases.

The assumptions of the General Theory of Relativity have been brilliantly

confirmed. Curvature of light rays when passing near material bodies has

been observed. Exact measurements of the position of stars near the edge

of the solar disc, made during solar eclipses, show that the stars are not

found at their usual places, but are displaced towards the sun by approxi-

mately 2". The new relativistic theory of gravitation shows that the

perihelion of the planetary orbits, in addition to the displacements caused

by Newtonian attraction, should be displaced in each revolution of the planet

by a fraction of a revolution equal to 3v2/c, where v is the velocity of the

planet, and c is the velocity of light.

For Venus, the Earth, and Mars, due to their relatively low orbital

velocities, these annual perihelion displacements are very small (for Venus

0.0_6', for the Earth, 0.039", for Mars 0.014'_, and have therefore not been

detected by observations. An accurate determination of the perihelion of

these planets is difficult because of the small eccentricity of their orbits.

For Mercury, the annual displacement of the perihelion is 0.43", i.e., the

magnitude obtained from observations, but not accounted for by Newton's
law.

It is clear that even the General Theory of Relativity, like any theory
explaining certain natural phenomena, cannot account for and describe all

of their diversity and infinite interconnections. The law of universal

gravitation, formulated by Newton, is the first step in the study of the

interaction of bodies. Einstein's theory is the next step in knowledge of
the truth.
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§2. Unperturbed Motion of Spaceships

The motion of spaceships, as well as of other celestial bodies, is due

to themutualattraction of bodies, expressed by the law of universal gravita-

tion, as was mentioned previously.

If a body m has a unit mass, then a point body with a mass Macts on it

with a force

V__ Ix '
r

where p = fM. The force V is called the Newtonian potential of the body M.

As seen from the formula, the larger the mass of the body M the larger

(for a given value of r) the Newtonian potential. Thus, the Newtonian

potential of the sun is larger than that of the earth, and the potential of the

earth is larger than that of the moon.

The Newtonian potential of a celestial body at some point of space is

equal to the work which must be done in order to overcome the force of

attraction in moving a body of unit mass from the given point to infinity.

The determination of the potential of real celestial bodies having a

complicated form and distribution of masses is difficult. Only those celes-

tial bodies which have a spherical form and a uniform density distribution

at all points possess the same potential as do point bodies with equal masses.

Hence it may be concluded that a spherical celestial body with a uniform

density distribution attracts a material point in space as though the entire

mass of the body was concentrated in its center. This assumption is used

when determining the laws of unperturbed motion of spaceships.

Thus, we will assume that a real celestial body (the sun, the earth, the

moon, and so on) has mass M, which is concentrated in its center, and that

the mass of the spaceship moving in space is equal to m. The forces of

mutual gravitation impart to the shipan acceleration ], with respect to the

celestial body whose components along the axes of a rectangular coordinate

system with origin at the center of the celestial body, and stationary with

respect to the stars, will be (Figure 25):

d£X X •

d_y _ y.

J_= at_ --' r-_'

_z Z

J_ F
dr2 rS

These differential equations describe the unperturbed motion of a space-

ship. Their solution, omitted here, leads to the following results:*

fix "_ C2Y "Jr Csz : O;

r I ___ = C8;
Al

P

1 _ccos_ '

where C_,C2, Cs, p, and eare constants.

* The complete solution of the two-body problem can be l ound in all texts on celestial mechanics. See,

for example, /11/ and /31/,
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Thefirst of theseequationsis thatof a planepassingthroughtheorigin
of thecoordinates.Consequently, the orbit of the spaceship in unperturbed

motion describes a plane curve, stationary with respect to the stars and

lying in a plane which passes through the center of the celestial body.

f 1

EZ

FIGURE 25. Acceleration of a spaceship in the

gravitational field of a celestial body with mass M

In the second equation A_0 is the rotation angle of the radius-vector r

during the time interval At and therefore the arc of the orbit of a spaceship,

corresponding to the time interval At, willbe rA_. The area of an elementary

triangle described by the radius-vector during this time interval is

0.5 r.rA% Dividing this area by At we obtain the sectorial velocity of the

spaceship

Vsect_ 0.Sr _ a_
at

Comparing the value for the sectorial velocity with the second equation,

we note that the left-hand side is twice the sectorial velocity. Hence it

follows that the sectorial velocity of a spaceship, or the area swept by its

radius-vector, in a unit of time, is constant for all points on its orbit

(Kepler's second law).

The third equation is the equation of a second-order curve, or of a conic

section in a polar coordinate system with a focus at the center of the

celestial body and polar axis directed from the focus to the nearest vertex

c 2
of the curve. The parameter of this curve is p=_K, the eccentricity

e -_ 1 -t- ___c!_ and the polar angle _ = cp-- _0 is the true anomaly of the

spaceship (C4 = _/a is an integration constant).
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As is known,theellipse(whichin a particularcasereducesto a circle),
theparabola,andthehyperbolaareconicsections. For anellipse,e < I,

for a parabola, e = l, and for a hyperbola, e > I. Thus, a spaceship moves

either along an elliptical, parabolic, or hyperbolic orbit (Figure 26).

Motion is also possible along a circular orbit, in which case e = 0, and

along a radial orbit.

/
!

V/f£"

\ \

\ \

\

\
\

FIGURE 26. Types of orbits of spaceships

1- elliptical; 2- parabolic; 3- hyperbolic;

4- circular; Pt, P_, Ps, - perigees (peri-
helions) of the orbits.

The form of the orbit of the spaceship is determined by its velocity V0

at the nearest vertex (perigee or perihelion). If V20_ 2_.then the ship

rp
moves along an elliptical orbit. For V_o_- -2_ the motion will be along a

rp

parabolic orbit, and for V0_> 2____, along a hyperbolic orbit. Consequently,

rp

the form of the orbit of a spaceship is determined by its linear velocity at

perigee or perihelion. Conversely, for the spaceship to move along a

prescribed orbit, it should have a certain velocity, which depends on the

mass of the celestial body, on the distance of the perigee or perihelion,

and on the required form of the orbit.

Let us now imagine two spaceships moving along different elliptical

orbits around the same celestial body. Denoting their periods of revolution

by P, and P2 and the semimajor axes of the orbits respectively by al and

a2, it is possible to obtain the formula
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This means that for motion along elliptical orbits, the squares of the

periods of revolution are proportional to the cubes of the semimajor axes

of their orbits (Kepler's third law). It follows from this formula that in

the case of motion along an elliptical orbit, the period of revolution of a

spaceship is independent of the eccentricity of the orbit, and is determined

solely by the magnitude of the semimajor axis. Therefore, spaceships

moving along elliptical orbits with different eccentricities, but with semi-

major axes of identical length, have equal periods of revolution. Such

elliptical orbits with equal semimajor axes and different eccentricities are

called equal-energy ellipses.

These are the laws of unperturbed motion of spaceships. We repeat

once more that these laws are also correct for natural celestial bodies such

as planets and their satellites, comets, meteors, and so on.

_3. Cosmic Velocities

One of the basic motion parameters of a spaceship is its velocity. The

magnitude of the velocity not only determines the duration of the "flight"

from one point of space to another, which is important in space navigation,

but also, as shown above, determines the form of the orbit. We shall

therefore consider this problem in more detail.

The solution of the differential equations describing the motion of a

spaceship also leads to the following formula, determining its velocity at

any point of the orbit:

V_= 2_ -_- C4,

where C4 - _(e_- 1)
p

From analytic geometry it is known that for an elliptical orbit the square

of the eccentricity is
aa- bZ

a2

and the parameter of the orbit is

bl

p:_- ,

where a and b are the semimajor and semiminor axes of the orbit,

respectively.

Therefore
C4 _

a

The velocity of the spaceship at a given point of the elliptical orbit is

then determined by the formula:

This formula can be represented in a different form. Let the radius of

the celestial body with respect to which the ship is moving be R, the

instantaneous height above its surface be H, and the gravitational accelera-

tion on the surface of the celestial body be go.
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In this case

r-_-Rnt-H.

Let us now imagine that some body with mass mj lies on the surface of

the celestial body. Its weight will be mtgo, but on the basis of the law of

universal gravitation

mlgo_ f Mml
R_ '

from which

[M = e _ R2go •

Now the formula for the velocity of the spaceship at any point of its

elliptical orbit will be

V'=R'go(_+ 1)H a "

If we consider the motion of a satellite of the earth, then in this formula

R is the radius of the earth, go is the gravitational acceleration at the

surface of the earth, and /-/is the altitude of the ship above the surface of

the earth at the given moment. If we consider the motion of a spaceship

relative to the sun, then in the formula, R, go, and Hare respectively the

radius of the sun, the gravitational acceleration on its surface, and the

ship's altitude above the surface of the sun.

It follows from the last formula that the velocity of a spaceship along an

elliptical orbit does not remain constant. In the above equation the second

term in the brackets, for a given elliptical orbit, as well as the product

R2go are constant, and therefore the maximum velocity corresponds to the

smallest value of H, i.e., the perigee (perihelion}, and the minimum

velocity, to the largest value of H the apogee (aphelion}.

As an example, the formula was used to calculate the velocity at two

points, perigee ( Hp -- 226 km} and apogee ( Ha = 1881 km}, of the third Soviet

artificial earth satellite, launched into orbit on 15 May, 1958. The velocity at

perigee was found to be about 8.19km/sec and at apogee, 6.55km/sec.

A circular orbit is a particular case of the elliptical orbit, and therefore

the above formula is also correct for a circular orbit. But when moving

along a circular orbit, the semimajor axis a = R + H. Substituting this value

of a in the previous formula and setting V= Vqwe obtain

Vct _ R + H

For a given circular orbit the altitude of a spaceship remains constant,

and therefore its velocity at all points of a circular orbit is constant.

The velocity determined by the last formula is called circular, and in

the case of the earth is the first cosmic velocity.* As can be seen from

the formula, the magnitude of the circular velocity depends not only on

certain physical characteristics of the celestial body (R, go) but also on the

height of the ship above the surface. The larger the R and go of the celestial

body, the higher the circular velocity, the greater the altitude of the

* This formula may also be easily obtained by using the tact that in tile case of motion along a circular

orbit the torte oI inertia is equal to tile lorce of attractton o! tile spaceship by tile celestial body.
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spaceship, the lower the velocity which it needs in order to move along a

circular orbit (Figure 27).

I km/sec

0 I 2 J 4 $ 6 7 $ f I0 II f2

FIGURE 27. Dependence of the first and second cosmic velocities

on the altitude of the spaceship

The velocity of a spaceship for H = 0 is sometimes called zero circular

velocity. Zero circular velocities for various celestial bodies were given

in the first chapter.

At a distance of 384,400km from the earth, which is equal to the mean

distance between the moon and the earth, the first cosmic velocity is equal

to 1.02 km/sec. This is the mean velocity of the moon along its orbit. For

a satellite of the sun the circular velocity at the distance of the earth's

orbit from the sun is equal to the mean velocity of the earth around the sun,

29.8 km/sec.

Thus, for a spaceship to move along a circular orbit at a given altitude,

it is necessary to give it circular velocity at this altitude. This is not the

only condition. The second is that the instantaneous velocity vector be

perpendicular to the radius-vector of the ship. Nonfulfillment of one of

these conditions results in elliptical motion. It is interesting to note in

this connection that if several bodies are launched with circular velocity

from one point of space in different directions, after some time all these

bodies return simultaneously to the starting point.;'.-" This is due to the fact

that they will move along elliptical equal-energy orbits with one common

point, for which, as was indicated above, the periods of revolution are equal.

* With the exception, of course, of those which in their motion meet the surface of the celestial body.
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Thecircular velocityis not, as is sometimesthought,theminimum
velocityfor theexistenceof a satelliteof a celestialbody. Supposethat
thesatellitereceivescircular velocityat pointA(Figure 28). It will then

move along the circular orbit /. However, it can also move along the

elliptical orbit 2, where the velocity required at point A is evidently lower.

Finally, motion along orbit 3 is also possible in principle. In this case,

an even lower velocity is required at point A. Let us confirm this by

calculation.

Let us assume that the point A is situated 500km above the surface of

the earth. The first cosmic velocity at this height is

_# R'go __ 1#__a71' _8):!o-s =7.62 km/sec.Vl = R q H y 637I nc 500

This velocity results in motion along the circular orbit I. If the height of

the point P2is equal, for example, to 150kin, and of the pointPsis equal

to 0kin, then the lengths of the semimajor axes for the second and third

orbits are:

ag= 2.6371 -_-500_ 150 --6696 km;
2

as-- 2-6371 q-S00 b0 =6621 kin.
2

Then the velocities required at the point A in order to move along these

orbits will be:

R+// _ =7"51 km'/sec;

¢ ,)Vs= RSg° R+u _ =7.47km/sec.

For motion along a parabolic orbit e = I and therefore C 4 = 0. Taking

V= Vc_, we obtain

Vc_t_ 2g

r

or, analogously to the previous formulas,

2R_g °Vc_ _ R q- tt

The velocity determined from this formula for the earth is called the

second cosmic velocity. For all celestial bodies this velocity is also called

parabolic, and sometimes escape velocity* or break-off velocity, meaning

"escape" and "break-off" from the action of the gravitational field of the

celestial body. In fact, a parabola is a curve whose branches go to infinity,

and therefore a spaceship having at a given point in space the velocity V¢,

goes from the celestial body to infinity, i.e., completely overcomes gravita-

tion. As can be seen from the formula, the velocity of the spaceship at

infinity (/l = ¢_)will in this case be equal to zero.

The first chapter gives the values of the escape velocity for the celestial

bodies of the solar system. Figure 27 shows the dependence of the second

cosmic velocity on the height above the earth's surface.

* The formula for the escape velocity can also be derived on the basis of the Law of Conservation of gnergy.

The kinetic energy ol the spaceship should be equal to the work expended to move it in the gravitational

field ot the celestial body from tim given level II to inlinity.
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Thus,velocitieslower thantheescapevelocitycorrespondto elliptical
orbits, andthe escape velocity, to parabolic orbits. It is natural now to

draw the following conclusion: the closer the velocity of a vehicle to the

escape velocity, the more elongated the elliptic orbit will be, and the further

from the celestial body it will move.

1
v,-_s; v,< v,,v,< v,

FIGURE 28. Minimum velocities of a

satellite ship for flight along 1) circular

and 2) and 3) elliptical orbits

Sub-parabolic velocities are characteristic of satellites of celestial

bodies, and parabolic and super-parabolic velocities correspond to flights

beyond the gravitational boundaries of a given celestial body, for example,

interplanetary flights from the earth.

Comparing the formulas for the circular velocity and for the escape

velocity, one observes the simple relation:

Vc 2 _--- Vcx _-2 _ 1.41Vc I

As was already indicated, velocities higher than the escape velocity are

called hyperbolic. A spaceship with a hyperbolic velocity goes to infinity

like the case of escape velocity, but the curvature of the orbit is smaller,

the ship departs more rapidly from the celestial body, and the velocity at

infinity is higher than zero.

For a hyperbola e2 _._ uS ÷ b_
aS
bS

P_-;

a

The formula for the velocity in this case takes the form:

or
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This formula determines the velocity of the spaceship at any point of a

hyperbolic orbit. As can be seen from the formula, at infinity (H = _)

V_ == R_go_
tz

Let us determine the velocity which, at the mean distance of the earth

from the sun, ensures the escape of a spaceship from the gravitational field

of the sun. It is clear that its magnitude can be calculated by the formula

for the escape velocity, if we put R = the radius of the sun, go = the gravita-

tional acceleration at the surface of the sun, and R+H= the mean distance

between earth and sun.

This velocity can also be obtained in another way. The circular velocity

of a satellite of the sun at the distance of the earthfs orbit is equal to the

mean velocity Ve of the earth along its orbit around the sun. Knowing the

relation between the circular velocity and the escape velocity, we obtain

V--_Ve V2-=29.8.1.41_42.1 kin/see.

Thus, the heliocentric velocity, the escape velocity of a spaceship with

respect to the sun is 42.1km/sec. Determination of the escape velocity of

the ship with respect to the earth, the geocentric velocity, is an important

problem since the spaceship must take off from the earth.

Calculations show that the minimum velocity with respect to the earth

of a spaceship to start from the surface of the earth for flights beyond the

limits of the solar system should be 16.7km/sec. This constant velocity

is called the third cosmic velocity. We will discuss this and show its

physical meaning in a later section. Now we only note that this velocity is

not high, if we compare it with the second cosmic velocity (ll.2km/sec at

the surface of the earth). This indicates that currently existing rockets will

in principle be able to fly beyond the limits of the solar system.

Of course, spacecraft can also move with respect to celestial bodies with

higher velocities -- reaching nearly the velocity of light.'_

In concluding this section we consider an important parameter of motion,

the revolution period P of a satellite around a celestial body.

Consider a satellite moving around a celestial body of radius R along a

circular orbit at a height H. Obviously,

p= 2_(R+H) 2-(R+H) __ 22 1/ (R+H)'_

Vc, -- ]/" R_g, R i/ _0 "
I/ R+/_

But for a satellite moving along a circular orbit, R + H = a, and therefore,

R '

where a is the semimajor axis of the orbit.

It was shown above that the period of revolution is independent of the

eccentricity of the orbit. Ships moving along orbits with equal semimajor

axes have equal periods of revolution. Consequently, this formula is also

true for ships moving along elliptical orbits, if the semimajor axis of the

* Measurements of the velocity of light made in 1951 resulted in thevalue 299,792km/sec, with a probable

accuracy of I to 2km/sec.
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elliptical orbit is calculated by the formula

a_R+ Hp +Ha
2

where H a and Hp are respectively the heights of the furthest (apogee,
aphelion) and nearest (perigee, perihelion) points of the orbit. The revolu-

tion period also depends on such physical characteristics of the celestial

body as its radius and the gravitational acceleration at the surface (Tables
5 and 6).

TABLE 5. Revolution periods of a satellite ship orbiting the earth

Height of

circular

orbit, km

0

I00

200

300

500

I000

2000

3000

Semimajor

axis, km

6370

6470

6570

6670

6870

7370

8370

9370

Period of

revolution

hr min
1 24.4

1 27

1 29

1 31

1 35

1 46

2 08

2 31

* The mean distance from the earth to the moon.

Height of

circular

orbit, km

5000

10,000

20,000

30,000

35,870

40,000

50,000

100.000

Semimajor

axis, km

11,370

16,370

26,370

36,370

42,240

46,370

56,370

i06,370

384.400*

Period of

revolution

3hr22 min

5 49

11 30

18 37

24 00

27 44

37 11

96 24

27.32 days

TABLE 6. Revolution periods of satellite ships orbiting the planets and the moon

Planet

Mercury ............

Venus .......... . . . .

Mars ..............

Jupiter. .............

Saturn ..............

Uranus ........... . .

Neptune ............

Moon ..............

H=0km

1.48

1.49

1.61

2.86

3.92

2.95

2.63

1.82

Revolution period, hours

H = I000 km

2.46

1.88

2.38

2.92

4.01

3.13

2.80

3.60

H = 5000 km

7.70

3.63

6.38

3.18

4.43

3.85

3.46

13.90

It follows from Table 5 that the revolution period of a satellite orbiting

the earth, in a circular orbit at a height of H : 0, is equal to 84.4 min. As

is known, this is also the oscillation period of a Schuler pendulum, a hypo-

thetical pendulum with a plumb-line equal in length to the radius of the

earth and with the point of suspension at the surface of the earth. The

remarkable property of such a pendulum is its unperturbability. Accelera-

tion applied to such a pendulum does not move it out of the vertical. This

property of the Schuler pendulum is widely used in inertial navigation
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systems of aircraft and ships, which are essentially physical analogues of

a hypothetical pendulum with an oscillation period of 84.4 rain.

The launching of a satellite which is synchronous with respect to the

surface of the earth is also of interest. This satellite should obviously

have a revolution period of 24 hours. This, however, is not the only

condition. The plane of any satellite's orbit coincides with the center of

the earth, and therefore a synchronous satellite is only possible if the

inclination of its orbit i = 0°. In other words, the satellite should be

launched over the equator in the direction of the earth's rotation (from west

to east) into a circular orbit 35,870km above the surface of the earth with

an orbital velocity of approximately 3.07 km/sec (see Table 5). Such a

satellite will "hang" above the same point of the equator. Some scientists

foresee a wide use of such satellites in world television systems, naviga-

tion, and communication systems.

§4. Perturbations of the Orbits of Spaceships

All the foregoing considerations were devoted to unperturbed, or

Keplerian motion of spaceships, whose laws are determined, as was shown

above, by the solution of the two-body problem. However, Keplerian

motion is only the first approximation to the true motion of spacecraft.

The true motion of spaceships takes place along orbits of a more compli-
cated form. The main reasons for this in the case of low-orbit artificial

earth satellites is the influence of the atmosphere and the nonuniform nature

of gravity due to the flattening of the earth at the poles and the nonuniform
distribution of its mass.

The influence of the gravitational fields of the sun, moon, and planets on

the motion of low-orbit satellites is actually slight but in interplanetary

flight they become important, and at certain distances overcome the effect

of the earth's gravitational field.

In general the perturbations are comparatively small, and the difference

between the actual and unperturbed orbits is small. It is therefore assumed

that at each moment, the motion is along an unperturbed orbit, whose

elements continuously vary as a result of the perturbations. Such orbits

with time-varying elements are called oscillating orbits.

The orbit perturbations are divided into secular and periodical. The

secular perturbations are characterized by a continuous variation of the

orbital elements in one direction, and the periodical perturbations are

characterized by an oscillation of the orbital elements about some mean

position.

Let us consider the perturbations of the orbits of low-orbit satellites in

greater detail. Periodical perturbations due to the nonuniform nature of

the earth's gravitational field give rise to deviations, of about 10 km, of the

true orbits of the satellites from the unperturbed orbits.

The main secular perturbation of the orbits of satellite ships due to the

nonuniform nature of gravity, is the precession of the orbit, which is

manifested in a slow rotation of the plane of the orbit with respect to the

axis of the earth (Figure 29). The inclination of the orbit in this case

remains practically unchanged.
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The mean velocity of angular precession _p of the orbit is given by the

formula

2_ [ _Re _

where Re is the equatorial radius of the earth; go is the gravitational

acceleration at the equator; a is the flattening of the earth; toe is the velocity

of angular rotation of the earth; i is the inclination of the orbit; p is the

parameter of the orbit; P is the rotation period of the satellite.

N Rotation of the earth

n

$

FIGURE 29. Precession of the orbit of an

earth satellite due to the nonuniform nature

of gravity (orbit inclination 65" )

As seen from the formula, the velocity of angular precession depends on

a number of parameters, including the inclination of the orbit (Table 7).

For satellites on polar orbits (i = 90 °) the angular precession velocity of

the orbit is zero.

TABLE 7. Precession velocities and rotation velocity of the line of apsides of the orbits of the first,

second, and third Soviet artificial earth satellites at the beginning of their existence

Artificial earth satellite

First.............

Second ...........

Third ............

Inclination of

the orbit,

degrees

65.129

65.310

65.188

Revolution

period, rain

96.17

103.75

105.95

Velocity of pre-

cession of the

orbit, deg/days

3.157

2.663

2.528

Velocity of rota-

tion of the line

of apsides of the

orbit, day

0.432

0.407

0.326

Thus, for the first Soviet artificial earth satellites the precession of the

orbit per revolution was approximately 1 5'.

The nonuniform nature of the earth's gravitational field is the reason for

another secular perturbation of the orbits of satellites. This is manifested

in the rotation of the line of apsides in the plane of the orbit, as a result of
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which the angular distance between the perigee and the ascending node

continuously decreases. The latitude of the geographical location of perigee

and of apogee accordingly varies. As can be seen from Table 7, this
perturbation for the first Soviet artificial satellites was considerably smaller

than the precession of the orbit.

l/a, km

/$00 "_"

I000 _ _,

O00

0 JOe 1500

_p, km
260,

2O0

\ I00

25OO0

d

N
500 1500 250O

FIGURE 30. Dependence of tile height of the apogee H a and the perigee Hp

of the {irst (1), second (I1), and third (Ill) Soviet artificial satellites oil the

number of orbits around tile earth

Thus, the nonuniform nature of gravity changes the orientation of the

ship's orbit in space but does not affect the form of the orbit. Another

source of secular perturbations, atmospheric drag, has very little effect

on the orientation of the orbit, but considerably modifies its form.

The atmospheric drag reduces the energy of the satellite, resulting in a

decrease of its flight altitude (Figure 30). Analyzing the observed data of

_nliLI

H0

'M

w5

,oo

,o \ \
0 I(I00 2000 N

FIGURE31. Revolution period of the
first (l), second (II). andthird(III)So-
viet artificial satellites as a function of
the number of revolutions around it

the first artificial earth satellites, it can be

seen that until penetration into the dense

layers of the atmosphere (H =, 200 kin), the

decrease in the height of the apogee is faster

than the decrease in the height of the perigee.

Consequently, due to the atmospheric drag,

the elliptical orbit of a satellite approaches

a circular form.

Due to the lowering of the flight altitude,

the revolution period of the satellite decreases

(Figure 31). The rate of deceleration of a

satellite depends on its cross-sectional load,

the ratio of the weight of the satellite to the

area of its (middle) cross section, and on a

coefficient determined by the geometrical form

of the satellite and its orientation in space.

The higher the cross-sectional load, the

smaller the influence exerted by the atmosphere on the satellite. The drag

is also less at greater heights due to the decrease in atmospheric density

with height.

Atmospheric drag also reduces the altitude of a satellite in a circular

orbit (Table 8).

Above an altitude of 140 to 160km, the satellite makes altogether only

1 to 2 revolutions.

The duration of satellite's motion from the moment of being put into orbit

to complete braking in the dense layers of the atmosphere is called the
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satellite's lifetime. This depends not only on the cross-sectional load, but

to a considerable extent also on its flight altitude. With increasing altitude

the lifetime increases. Thus, for circular orbits, an increase in altitude

from 250kin to 300km increases the lifetime by a factor of 5; from 300 to

400km, by a factor of 8; and from 400 to 500 km, by a factor of approxi-

mately 6.3 (Table 9).

TABLE 8. Decrease in the height of a circular orbit of an earth satellite in one revolution (average

data for one of the laws of variation of the atmospheric density) (Cross-sectional load about 20 kg/m 2)

Orbit height, 48o 4u _0 2o t_o 160
km

Decrease in the 0.016 0.032 0.145 1.05 7.6 53.1

height per one
revolution, km

TABLE 9. Lifetimes of an earth satellite (weight 100kg, diameter I m, cross-

sectional load about 128 kg/m 2)
a) circular orbit

+.+,1-i-i+ .etime.d+s o.4 4 °5 I i °1°
b) elliptical orbit (lifettme in days)

Height of

perigee,km

200

230

260

300

400

5OO

9

25

53

114

410

Height of apogee, km

700 1

18 37

52 102

116 238

260 545

1120 2630

13_ 1600

58 82

165 237

370 535

890 1280

4450 6600

The lifetime of satellites is directly proportional to the cross-sectional

load and inversely proportional to the drag coefficient. Thus, for a satellite

with a diameter of 2 m, weighing 1000 kg (cross-sectional load of about

319 kg/m2), the lifetime will be longer than those given in Table 9 by a factor

of approximately 2.5 /2/.

As was already said, the gravitational fields of the sun, the moon, and

the planets exert a small influence on the motion of low-orbit satellites.

Only at altitudes measured in tens and hundreds of thousands of kilometers

do the effects of other celestial bodies, and primarily the sun and the moon,

become noticeable in practice.

The perturbing actions of the sun and the moon on a satellite lead first of

all to a variation in the height of the perigee. Depending on the position of

the orbit with respect to the sun, the height of the perigee may increase or

decrease. The variation in one revolution depends on the height of the

apogee; the higher the apogee, the more the height of the perigee varies.

Decrease in the height of the perigee can considerably shorten the lifetime

of a satellite in comparison with the nominal values, which take into account

only atmospheric drag.
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Thus,for example,theSovietautomaticinterplanetarystationlaunched
on4 October,1959,whichphotographedthefar sideof themoon,passed
neartheearthat aheightof somewhatover40,000km onits first revolution.
Theapogeewasapproximately480,000km.At suchgreatheights,
atmosphericdragis practicallynil andit couldthereforebeexpectedthat
thestationwouldremainin orbit for a very longtime. However,the
perturbationof thesuncausedsucha sharpdecreasein theperigee,that
the lifetime of thestationwasonlyabouthalf ayear.
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FIGURE 32. Perturbation of the orbit of the spaceship

launched to the moon, calculated by V.A.Egorov.

The dashed line shows the orbit without allowance for

the perturbation of the moon; the figures on the orbits

of the ship and of the moon give the duration of the

motion in days from the moment of launching

In order to prolong the lifetime of such automatic stations and spaceships

three conditions must be satisfied. The apogee should be as small as

possible. For example, for a flight to the moon, the apogee should not

greatly exceed the distance from earth to moon. Furthermore, the perigee

on the first revolution should be sufficiently large. Finally, the moment

of launching should be chosen so that the perturbation of the sun does not

lead to a decrease in perigee.

The perturbations of the orbit of a spaceship are particularly large if it

enters the gravitational field of another celestial body (Figures 32 and 33).

Perturbations also arise from the pressure of solar rays on the

spaceship. However, such perturbations are observable only in the case

of long flights relatively near to the sun.*

Thus, flights to the moon and to other planets require calculation

of the orbits which take into account the perturbations in the gravitational

fields of these celestial bodies.

* [The effects of solar pressure are inversely proportional to the cross-sectional load. Thus, the American

"Echo" satellite, a hollow sphere of extremely low cross-sectional load, was seriously affected by solar

pressure.]
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FIGURE 33. Perturbation of the orbit of a spaceship with a

calculated apogee at the point where the gravitational attrac-

tions of earth and moon are equal, calculated by V.A.Egorov.

The dashed line shows the orbit without allowance for lunar

perturbations; the figures on the orbits of the ship and moon

give the duration of the motion in days from the moment of

launching

§5. Zone of Predominance of the Attraction and the Sphere
of Action of the Earth and of Other Celestial Bodies

According to the law of universal gravitation, the force of attraction is

inversely proportional to the square of the distance. Consequently, as one

gets further from a celestial body the force of attraction acting on the ship

rapidly decreases. But the force of attraction is proportional to the product

of the mass of the celestial body and the mass of the spaceship. Therefore,

in general, two celestial bodies, equidistant from a spaceship, act unequally

on it. Obviously, there will be a series of points in space at which the

attraction of the ship by both celestial bodies is equal. These points form

some surface in space, which is the boundary of the region of predominance

of the attraction of one celestial body over the other (Figure 34).

We will now give the solution of a particular problem -- to find the point

on the straight line connecting the centers of two celestial bodies, at which

their attraction is equal.

The attraction of the ship by the two bodies is:

FI = _ Mlra Mlim

where Ml and M2 are the masses of the celestial bodies, and rl and r_ are
the distances from their centers to the spaceship.

From the conditions of the problem Fz = F_, and consequently:

r_ M! ri V Me "
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If the first body is the sun, and the second body is the earth, then

M®/M$= 333,434 and ro/r _ =577.432. The point of equal attractions is situated

at a distance of 149,198,620 km from the sun and 258,380km from the earth.

Larger planet

A Smaller planet

Region of predominance of the
attraction of the small body

Region of predominance of the

attraction of the large body

FIGURE 94.* Region of predonlinance of the attraction of

celestial bodies (at the points A and B the attraction of the

spaceship by the two bodies is equal)

For the earth-moon system, the point of equal attractions is 38,321km

from the moon and 346,079 km from the earth.

However, knowledge of the region of attraction predominance is not as

important in space flights as the knowledge of the parameters of the sphere

of action of the celestial body.

Consider two celestial bodies, for example the sun and the earth. The

spaceship starts from the earth, flying to other celestial bodies. Since it

must have a velocity not less than the second cosmic velocity, it will

initially move along a parabolic or hyperbolic orbit with respect to the

earth, influenced by the earthVs gravitational field. Afterwards, it will

follow some orbit under the action of the gravitational field of the sun.

That region of space, within which the orbit of a spaceship is affected by

the gravitational field of a given celestial body, is called the sphere of

action of the celestial body. It is possible to give a more rigorous definition

of this sphere. For example, for the sun-earth system, the sphere of

action of the earth is that region of space, within which the ratio of the

perturbing force of the sun to the force of attraction exerted by the earth

on the spaceship is smaller than the ratio of the perturbing force of the

earth to the force of attraction of the spaceship by the sun:

Fpert. S _fpert. E
F E--.,.s FS_ s

or

FS* s-FS_E _ FE*s-FE-_s
FE__.s VS.-. s

where Ps..,siS the force of attraction of the spaceship by the sun; FE__,siS the

* [We may consider the case of a line passing through bothcelestiaI bodies. The magnitude of tile gravita-

tional attraction of each is shown as the tteight of the shaded area in Figure 34. Tile region of ptedonrinance

of the attractive force of a heavenly body is where its shaded area is higher than the other. Points A and

B denote the places where the heights, and therefore tile gravitational forces, are equal. The region of pre-

dolninance of tile smaller planet is between points A and B; on either side of it the gravitational attraction

of tile larger planet is greater.]
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force of attraction of the spaceship by the earth; F_. E is the force of

attraction of the earth by the sun; FE.S is the force of attraction of the sun

by the earth.

According to the law of universal gravitation, the last two forces are

equal.

The radius of the sphere of action of one celestial body to another of

larger mass is given by the formula

2

where m and M are the respective masses of the two bodies and r is the

distance between them.

The radii of the spheres of action of the planets with respect to the sun

have been calculated by this formula (Table 10).

TABLE 10. Radii of the spheres of action for the sun-planet systems

Planet

Mercury
Venus
Earth
Mars

Radius of the

sphere of action,

thousands of km

110

620

930

58O

Planet

Jupiter

Saturn

Uranus

Neptune

Radius of the

sphere of action,

thousands of km

48,500

54,500

52,000

89,500

The greater the ratio m / M and the distance r, the greater, as can be

seen from the formula, is the radius of the sphere of the action of the first

body. This explains the large radii of the spheres of action of the remote

giant planets.

Within the sphere of action of a planet, the motion of a spaceship is

determined mainly by its gravitational field. The gravitational fields of

other celestial bodies, including the sun, cause relatively small perturba-

tions of this motion. Outside the sphere of action of the planet, the motion

is determined by the gravitational field of the sun; the gravitational fields

of the planets cause only small perturbations. When a spaceship flies from

the earth to the moon and back (the radius of the sphere of action of the

moon with respect to the earth is approximately 66,000 km), the motion

within the moon's sphere of action is governed by the moonrs gravitational

field, and outside of it by that of the earth (Figure 35). The sphere of action

of the earth is considerably larger than the zone of predominance of the

earth's attraction, as seen from the figure. An interplanetary spaceship

will be "tied to the earth" through its gravitational field up to 930,000 km.

Motion within the sphere of action of the earth, considered with respect

to the earth, we will call geocentric; motion in the sphere of action of the

moon, considered with respect to the moon, we will call selenocentric;

motion outside the spheres of action of the earth, of other planets, and of
the moon we will call heliocentric.

Calculation of the trajectory of a spaceship in the general case is related

to the solution of a problem for several bodies, for example; earth- ship-

moon, or earth- ship- sun - Venus. This problem can be approximately

reduced to separate solution of the two-body problems; earth- ship and

moon - ship or earth- ship, sun - ship, and Venus - ship.
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We return now to the problem of the third cosmic velocity and attempt

to determine its magnitude. We recall that the third cosmic velocity is the

minimum take-off velocity from the surface of the earth which ensures

escape from the solar system. As was indicated previously, the heliocentric

escape velocity from solar attraction is 42.1km/sec, and the orbital

velocity of the earth with respect to the sun is 29.8km/sec. We will assume

that the ship is launched from the earth in such a way that, on the boundary

of the earth's sphere of action, the vector of its geocentric velocity coincides

with the vector of the orbital velocity of the earth. In this case the required

geocentric velocity on the boundary of the sphere of action of the earth is

Vt_42.1 -- 29.8= 12.3 km/sec

Taking into account the necessity to overcome earth's gravitational field,

we obtain on the basis of the law of conservation of energy

"V_s='/o-t- r'v--_'_
2 2

The kinetic energy spent on accelerating a spaceship, starting from the

surface of the earth, should be equal to the sum of the potential energy at

the surface of the earth and the kinetic energy of a ship having velocity Vl

at the boundary of the earth's sphere of action.

Pluto

years 91 days

Neptune I

ars 343 days

Uranus [

v _282 days

d" "_ years 194 days

ay_" _'_l y_ar a9 days

Orbit of the earth

FIGURE 35. Sphere of action of the earth,

zone of predominance of the earth's

attraction over the sun's attraction (shaded),

and the sphere of action of the moon with

respect to the earth

FIGURE 36. Orbit of a ship starting from

the earth with the third cosmic velocity

We have already noted that to overcome the gravitational field of the

earth, a spaceship starting from the earth should have the second

72



mV_ t
cosmic2 velocity_ z Vcz-- 11.2 km/sec.* Consequently, Uo_--_ and then
mV_ ,nVc, my,
_---2 .... 2 -¢ 2 • Assuming the mass of the spaceship in flight is con-
stant, we obtain

Vc_-- V v_,+ v_;

Vc3_---1/I1.2'+ 12.3'= 16.7 km/sec

This is the so=called third cosmic velocity. A star-ship launched with

this velocity will first move along a hyperbolic orbit with respect to the

earth. Then, after leaving the sphere of action of the earth, it will move

along a parabolic orbit with respect to the sun (Figure 36).

Thus, the third cosmic velocity is equal to 16.7 km/see, but this velocity

was obtained without considering the diurnal rotation of the earth. As a

result of this rotation, as was shown in the first chapter, all points on the

terrestrial surface have a linear velocity Vr = 0.465 costp where _ is the

latitude of the starting point. Consequently if it is assumed that the vector

of this velocity and the vector of the initial velocity of the star-ship coincide,

to fly beyond the solar system the ship should have a velocity V-- 16.7 =

- 0.465 cos ¢p. The velocity of the diurnal rotation of the earth should be taken

into account in the launching of spaceships of any type.

§6. Trajectories of Interplanetary Ships

Let us consider now the trajectories of interplanetary ships. Assume

first that the earth and other planets move along circular orbits whose radii

are equal to the mean radii of their true orbits, and that the orbits of the

planets and of the spaceships lie in one plane.

In general, the trajectory of an interplanetary ship can be divided into

the following phases (Figure 37): launch and vertical flight to satellite

orbit height (AB), flight in a circular or elliptical orbit around the earth (BC),

flight within the limits of the sphere of action of the earth (CD), flight along

an elliptical orbit with respect to the sun (DE), flight within the sphere of

action of the destination planet (EF), orbital flight around the destination

planet (FG) and, finally, the descent to the surface of the destination

planet (GH).

The trajectory points at which the spaceship transfers from one orbit

to another are called transition points or orbital transfer points. In

general all these points, with the exception of points D and E, a certain

amount of energy has to be expended for the transfer of the ship from one

orbit to another. At points D and E transfer into the next orbit is made

without energy expenditures, since the spaceship passes from the sphere

of action of one celestial body to the sphere of action of another.

We shall now describe a typical flight of an interplanetary spaceship.

It starts vertically in order to escape more rapidly into the rarer layers

of the atmosphere. The flight trajectory then curves according to a certain

program (Figure 38), precalculated to give the required altitude H0 and the

* To reach the boundary of the sphere of action of the earth, a somewhat lower velocity. V = 11.15 km/ sec.
is necessary.
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required inclination angle 0 of the velocity vector to the horizon at the end

of the initial section.

/£

i

FIGURE 37. Phases of the trajectory of an interplanetary ship

AB - Initial flight; BC - circular (elliptical) orbit around the

departure planet (earth); eta- flight within its sphere of action;

hE. flight along an elliptical orbit with respect to the sun;

EF - flight in the sphere of action of the destination planet;

FO - orbital flight around the destination planet; Ot¢- descent

to the surface of the destination planet.

_" _, _ "_ _ "_" _ _ __ IlO

FIGURE 38. Launching a spaceship into its trajectory

• - angle of inclination of the velocity vector v to the horizon;

H,- altitude at the termination of the initial phase.

To obtain a circular orbit, this angle should be zero, and the velocity

should be the circular velocity for the given height.

The total velocity which has to be given to the spaceship in order to put

it into orbit and overcome the influence of the gravitational field and the

atmospheric drag is called the characteristic velocity. The velocity

required to compensate for the influence of gravity and the atmospheric

drag amounts to about 2 to 3 km/sec. In order for the ship to have a final

velocity of 8km/sec, the ship's propulsion system should possess a

characteristic velocity of I0 to 11 km/sec. Similarly, for a final velocity

of llkm/sec, the required characteristic velocity is 13 to 14km]sec.
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Usingexistingchemicalfuels, suchcharacteristicvelocitiescanbeattained
onlybymulti-stagerocketsystems/2/.

It is possible to calculate the required velocity and angle @ for an elliptical

orbit oriented in any given way. The minimum velocity is required when

FIGURE 39. Putting a spaceship into
a circular orbit from a transitional

elliptical orbit

P and A- perigee and apogee of the

transitional orbit; ecl- v A + _v
is the total velocity required for a

given orbit.

the end of the intial phase coincides with the

apogee. However, to reduce the total energy

losses, it is most advantageous to introduce

the ship into orbit in the region of its perigee.

But since the length of the initial phase is

short, this method is inapplicable if the ship

has to be introduced into an orbit with a

perigee height of several thousand kilo-

meters. In this case the spaceship should

first be introduced into a transitional orbit

with small perigee (Figure 39). At the

apogee it should be given an additional

velocity AV so that it will move on the

preassigned circular orbit around the

earth.

Calculations have been made for intro-

ducing a ship in this way into circular

orbits of different heights with the perigee

of the transitional orbit kept constant.

They show that with increasing height of

the preassigned orbit the total velocity

required first increases, reaching a maxi-

mum value at a circular orbit height of

about 100,000km. It then decreases tending in the limit to the second

cosmic velocity (Table 11). Launching of a ship to a greater height requires

a lower total velocity, strange as this may seem.

TABLE 11. Velocities at perigee and apogee of the transitional orbit for introducing

the ship into a circular orbit of a given height (perigee of the transitional orbit
200 km )

Height of the

given orbit, km

1000

5000

25.000

50,000

75.000

100,000

125.000

150.000

200,000

Required velocity

at perigee of the
transitional orbit,

km/ sec

8.009

8.769

10.016

10.424

10.595

10.690

10.749

10.790

10.844

Additional velo-

city at apogee of
the transitional

orbit, krn/sec

0.214

0.854

1.467

1.444

1.358

1.276

1.204

1.143

1.045

Total velocity,
km/sec

8.223

9.623

13.483

11.868

11.953

11.966

11.953

11.933

11,889

Calculation of the initial phase should take into account the diurnal rota-

tion of the earth. It is obvious that launching of the spaceship in an easterly
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direction is more advantageous, since the velocity of the earth's rotation

is added to the velocity given the ship by its propulsion system.

The increment in the ship's velocity due to the rotation of the earth

largely depends on the inclination of the orbit and the altitude height of the

introduction point. It can be approximated by the formula

aV = ¢oE(R + Ho) cos i,

where R and 0) E are the radius of the earth and its angular rotational

velocity about its axis; H0 is the height of the introduction point; i is the

inclination of the orbit.

The second phase of the trajectory of an interplanetary ship is the flight

along a circular or elliptical orbit around the departure planet (Figure 37).

This period may be used for various purposes. If the interplanetary ship

uses chemical fuel, it may be refueled by "tanker" rockets which join it

in orbit. It has even been proposed that large interplanetary rockets be

assembled in orbit from subassemblies flown up by "ferry" rockets. This

would allow the interplanetary ship to be designed for flight in vacuum

only, which would simplify its construction considerably by eliminating

parts needed for atmospheric penetration. In any event, the interplanetary

ship will wait in orbit for favorable radiation conditions in cosmic space

and favorable positions of the departure and destination planets.

From the energy point of view this section is characterized by initial

flight, i.e., the interplanetary ship becomes a satellite of the departure

planet for a while. At the end of the second phase the ship is given

additional velocity for leaving the sphere of action of the departure planet

and for further motion along a preassigned elliptical orbit with respect to

the sun.

The Soviet space probes launched to Venus on 12 February, 1961 and

to Mars on 1 November, 1962 first went into elliptical parking orbits around

the earth. The automatic station "Luna IV", which was launched on 2 April,

1963 was also introduced to a trajectory to the moon from an orbit of an

artificial satellite of the earth. First the interplanetary stations were

introduced into a satellite orbit around the earth, and then into an elliptical

orbit with respect to the sun.

The use of a zero-energy elliptical or circular orbit is feasible for all

interplanetary ships, but particularly for those with chemical rocket

engines. The feature of chemical rockets which makes them suitable is

their high thrust. This allows the velocity increment required to transfer

from an elliptical orbit around the earth to an orbit with respect to the sun to

be generated in a relatively short time.

We may also consider the use of an electron-rocket engine. The best

known form of such an engine is the "ion engine." Such an engine has

extremely high exhaust nozzle velocities (up to 200 km/sec) and very low
thrust. Its acceleration is correspondingly low (approximately 10-Sm/sec 2)

therefore a spaceship with such an engine cannot transfer from an earth

orbit to a solar orbit in a short time. Such a ship would have a long period

of acceleration after achieving circular orbit which would take it into

increasingly higher circular orbits before achieving solar orbit (Figure 40).

Another engine with a tremendous exhaust velocity and a low thrust is

the "photon" engine. It uses the reactive force of a powerful flux of photons

and is capable of acceleratinga spaceship to tremendous velocities, close
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to the velocity of light. Theideaof thephotonenginewasproposedby
• theGermanscientistE.S_nger,but thecreationof suchanenginedepends

onthesolutionof anumberof very complicatedproblems.
QuiterecentlyS_ngerproposeda newtypeof photonengine. In this

designthesourceof photonsis a plasmawitha temperatureof 150,000°C,
obtainedby meansof atomicenergyandcompressedbystrongmagnetic

h
FIGURE40. Additional acceleration

phase of a spaceship with an ion engine

fields. However, this project is for

the time being only an interesting idea.

Its practical realization is associated

with a number of serious difficulties.

For example, to obtain a parallel jet
of plasma (its normal motion is dis-

orderly) a special reflecting mirror

with very low absorption of the incident

radiant energy is necessary. Ordinary
metallic reflectors are unsuitable as

the coefficient of reflection of radiant

energy falling on them is small.

In some cases the second phase of

the trajectory flight along a satellite

orbit of the departure planet, may be
omitted. In this case, at the end of the

initial phase the ship is given a velocity

which takes it beyond the limits of the

earth's sphere of action along a trajectory

with respect to the sun.

Flight in the sphere of action of the

departure planet is along either an

elliptical orbit, whose remotest point is the boundary of the planet's sphere

of action, or along a parabolic, or, finally, along a hyperbolic orbit with

respect to the planet of departure. Thus, for example, if the departure

planet is the earth, it is possible to reach the boundary of its sphere of

action by following an elliptical trajectory whose apogee is on the boundary

of the sphere of action. Such an orbit results from a starting velocity at

the surface of the earth of 11.15 km]sec (disregarding gravitational and

atmospheric drag losses).

As the ship leaves the launch planet's sphere of action, its heliocentric

motion takes place along an elliptical, parabolic, or hyperbolic orbit with

a focus at the center of the sun. The type of orbit depends on the helio-

centric velocity, and the orientation of the orbit in space depends on the

direction of this velocity. As we want the spaceship to fly rigorously along

the calculated orbit, the attainment of the calculated values of the parameters

of the heliocentric exit velocity vector is the most important problem of
space navigation.

The heliocentric exit velocity vector of the spaceship, in the case of

starting from the earth, is equal to the vector sum of the orbital velocity

V E of the earth and the geocentric exit velocity V_×it (Figure 41).

If the heliocentric exit velocity is lower than the escape velocity for the

given distance of the ship from the sun, the ship will move alonga helio-

centric elliptical orbit. When these velocities are equal, the ship will
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move along a parabolic orbit, and if the exit velocity exceeds the escape

velocity, along a hyperbolic orbit.

tra octor\
_ tl_e

To tile SUn /

FIGURE 41. Heliocentric exit velocity of a spaceship starting from
the earth

1 and 2- the positions of the earth at the moment of launching and

at the moment of its leaving the sphere of action of the earth.

r

\ _  pbereofactlo0,

FIGURE 42. Two types ot heliocentric elliptical orbits in flight to Mars

I- minimum energy semi-elliptic orbit; II- nonminimum energy orbit, resulting

in a shorter flight duration.

eart h

Parabolic and hyperbolic orbits require higher exit velocities than

elliptical orbits, and therefore from the energy viewpoint the last is most

economical. Spaceships using chemical fuels will fly along elliptical

orbits. However, flights along elliptical orbits are longer; their

duration even when flying to comparatively close planets may be from

several months to several years. In the future, with the appearance of

powerful atomic and ionic engines, spaceships will fly along shorter

"roads" -- along parabolic and hyperbolic orbits.

Suppose it is necessary to fly to a superior planet, for example to Mars,

in a ship usinga chemical-fuel engine. Such a ship can achieve "heliocentric

flight" only along an elliptical orbit. The ship is launched so that on the
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boundaryof theearth'ssphereof action, thedirectionof thegeocentricexit
velocitycoincideswith theorbital velocityof theearth, asaresult of which
theheliocentricexitvelocityis equalto their arithmeticsum. In principle,
twosuchsolarelliptical orbitsareapparentlypossible(Figure42). The
perihelionsof theorbits of thefirst andsecondtypesare situatedonthe
orbit of theearth. Theaphelionis ontheorbit of Marsfor thefirst type
of ellipse, andbeyondit for thesecondtypeof ellipse. It canbeeasily
seenthatasfar asflight durationis concerned,thesecondtypeis more
advantageous,sincetheangularlengthof theflight is less than180°'(forthe
first typeof orbit it is alwaysequalto 180°). However,wealreadyknow
that in orderto movealonga moreelongatedellipticalorbit (thesecondin
ourcase)theheliocentricexitvelocityshouldbehigher(Table12).

TABLE 12. Required velocities at the end of the initial phase at /-/= 200 km

from the earth for various aphelion distances of the orbit from the sun

Required velocity at the end Distance kom the sun to the

of the initial phase, km/sec aphelion of the orbit, million km

11.015

11.515

12.015

13.015

14.015

15.015

16.015

168.9

247.7

314.1

480.1

760.3

1400.0

4618.0

Any number of orbits of the second type is possible, but although they

have shorter flight durations, they all require larger energy expenditures

than the unique orbit of the first type. This is why orbits of the first type

are called minimum-energy ellipses. Sometimes such orbits are also

called semi-elliptical.

Minimum energy orbits have another important disadvantage. As is

known, in shooting a rifle, the longer the range the less the accuracy.

Something similar occurs in space travel. As the range of a spaceship is

increased, the precision of its arrival at the destination decreases.

Conversely, if a given accuracy at destination is required, the vehicle must

be launched with greater precision for longer ranges. This is particularly

important for unguided space probes.

Another constraint exists in the case of minimum energy orbits. As

shown in Figure 42, the earth at the moment of launch, and the destination

planet, at the moment of expected arrival, must lie on a straight line

passing through the center of the sun. In other words, they must lie on the

line of apsides of the heliocentric orbit of the spaceship. This situation only

occurs at certain times.

Favorable moments for a minimum energy flight to Mars occur approxi-

mately every 2.14 years. In 1962, this was from the end of October to the

first part of November.

Orbits of the second type for flight to Mars are possible for periods of

approximately one year with a subsequent interruption of 13 months.
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Let us now consider possible heliocentric elliptical orbits for flight to

inner planets, for example to Venus, or back from Mars to the earth.

The direction of the ship's velocity vector from the boundary of the departure

planet's sphere of action should be opposite to the orbital velocity vector

of the departure planet. The heliocentric velocity of the ship is therefore

equal to the difference between these velocities and the orbit of the ship will

lie inside the orbit of the departure planet. The two orbits are tangential

at the aphelion of the ship's orbit. Only along such orbits is it possible to

fly to inner planets. Interestingly, such flight requires larger energy

expenditures than flight to superior planets. The distance of the perihelion

of such orbits depends on the velocity of the spaceship at the end of the

initial phase (Table 13).

TABLE 13. Required velocity at the end of the initial phase and distance of the

perihelion of the orbit from the sun (height of initial orbit 200 km from the earth)

Required velocity at the end Distance of the perihelion

of the initial phase, km/sec from the sun, million km

11.015

11.515

12.015

13.015

14.015

15.015

16.015

16.7

132.8

95.6

80.3

61.8

49.8

40.9

33.9

30.0

Tables 12 and 13 show that if the velocity at the end of the initial phase

exceeds the parabolic velocity by 2 km]sec, the "outbound" ship reaches

a distance of 480.1 million km from the sun (330.9 million km from the

orbit of the earth). In the second case, when flying to inner planets, the

ship approaches to within 61.8 million km of the sun, (only 87.7 million km

from the orbit of the earth).

Orbit Of the ea[tu"___..._

exit

xit j W
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FIGURE 43. Two types of heliocentric elliptical orbits for flight to Venus

I- minimum-energy semi-elliptical orbit; II- nonminimum energy orbit,

resulting in a shorter flight duration.
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Two types of elliptical orbits are possible when flying to inner planets,

too (Figure 43). The orbit of the second type intersects the orbit of the

destination planet, while the orbit of the first type is tangent to the orbit

of the destination planet. The contact point is at the perihelion of the space-

ship's orbit. The tangent orbit requires less energy expenditure since it

is a minimum-energy ellipse. But, as in the case of flight to outer planets,

minimum-energy flight is more prolonged than flights along orbits of the

second type, and requires higher navigational accuracy. All this should be

taken into account in planning flights both of manned spaceships and of

automatic interplanetary stations with scientific equipment. The longer

duration also increases the probability of encountering meteoric bodies

which are capable of injuring the spacecraft. Of course, other factors

should also be taken into account, for example, the scientific purposes of

the launching of the vehicle.

The heliocentric velocity of the spaceship along an elliptical orbit with

respect to the sun is given for any point by the already-familiar formula

where Ro is the radius of the sun; go is the gravitational acceleration on

the surface of the sun; Mo is the mass of the sun; a is the semimajor axis

of the ship's orbit; r is the distance from the given point of the orbit to the

center of the sun.

1
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FIGURE44. Positions of the earth and Venus for a

space flight to Venus along a semi-elliptical orbit
(Hohman's calculated trajectory)

I and I - the positions of the earth and Venus at the
starting moment of the ship; II and II- Venus'
eonjunntion_ III and III - the positions of the earth
and Venus at the moment of the ship's arrival at

Venus.

As an example let us consider the flight of the first automatic inter-

planetary station (AIS) to Venus, launched in the Soviet Union on 12 February,
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1961. Its heliocentric flight was close to a semi-elliptical orbit, corres-

ponding to a minimum-energy ellipse (Figures 44 and 45).

Sun

FIGURE 45, Orbit of the first automatic interplanetary

station (AIS) with respect to the sun

I and I- positions of the earth and Venus at the start-

ing moment of theAIS; II and lI- the moment the

AIS approaches Venus; 1, 2 ..... 10 - the succeSSive

positions of the AIS with respect to the earth and

Venus.

First the AIS was introduced into an approximately circular parking

orbit with a perigee of 230km, an apogee of 287km, and an inclination of

65 ° . At a precalculated point of the orbit the AIS was accelerated to a

velocity 0.661 km/sec higher than the second cosmic velocity.

Inside the earth's sphere of action the AIS moved along an orbit close to

a hyperbola. It reached the boundary of the sphere of action on 14February

at 2300 hours Moscow time. Its velocity with respect to the earth there

was about 4km/sec. Its velocity with respect to the sun, equal to the

vector sum of the earth's orbital velocity and the spacecraft's velocity with

respect to the earth at the boundary of the earth's sphere of action, was

27.7km/sec. We recall that the mean orbital velocity of the earth with

respect to the sun is 29.8km/sec.

The AIS then proceeded along an elliptical orbit with one of the foci at

the center of the sun. The distance of the orbit's aphelion from the sun was

151 million kin, and the distance of the perihelion, 106 million kin. The

inclination of the orbit to the plane of the ecliptic was 0.5 ° . The orbital

planes of the earth, Venus, and the automatic interplanetary station are

slightly inclined with respect to each other. In Figure 45 the orbit of the

AIS is shown projected on the plane of the earth's orbit. The simultaneous

positions of the earth and the AIS, and of the AIS and Venus are connected

by straight lines. As seen from the figure, at the start of the flight the AIS

lagged behind the earth (positions 2 and 3). Not long before the vernal
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equinox,21March, theearth, theAIS,andthesunwereall situated
approximatelyona straightline (position4), andthentheAISin its angular
motionaroundthesunovertooktheearth(positions5, 6, andsubsequent
ones).

The AIS steadily drew away from the earth and at the moment of approach

to Venus was 70 million km distant. Measurements of the orbit indicated

that the AIS passed at a distance of 100,000km from Venus. The moment

of closest approach was on 19 to 20 May, 1961. Thus, the flight time of the

AIS until the approach to Venus was slightly more than three months. The

high accuracy with which the AIS was launched into orbit is an outstanding

achievement of Soviet astronautics.

Unfortunately, it was not possible to complete this highly interesting first

experimental flight from the earth to another planet, due to the interruption

of radio communication with the AIS. This launching, and that of the AIS

"Mars I", indicate the success of powerful Soviet rocket systems and highly

accurate guidance systems in pioneering flights to other planets.

We shall conclude the characterization of the heliocentric flight section

of a spaceship by considering the flight duration. We note at once that the

duration of this section of the trajectory is considerably longer than the

duration of its other phases. The total flight duration to other planets will

therefore be determined mainly by the flight time along the heliocentric

orbit.

For flight along a semi-elliptical orbit, the flight duration will be equal

to half the period of revolution:

2 fM o '

where a is the semimajor axis of the orbit.

This flight time even to the nearest planets is comparatively long (Table

14). Therefore, in a number of cases it is necessary to plan the flights

along orbits of shorter duration, although they require larger energy

expenditures. Calculations show that in this case the flight duration can be

shortened by a factor of 2 or more (Table 15). However, specialists think

that the use of such orbits is connected with the problem of creating new

powerful engines for spaceships running on nonchemical fuels.

TABLE 14. Velocity at the end of the initial phase at

H = 200km and the flight duration along a semi-elliptical

orbit until arrival at a planet of the solar system

Planet

Mercury
Venus

Mars

Jupiter
Saturn

Uranus

Neptune

Velocity at end

of initial phase,

km/ sec

13.31

11.25

11.35

14.05

15.03

15.q3

16.00

Flight duration
until arrival at the

planet, years

0.29

0.40

0.71

2.72

6.04

16.0

30.6
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TABLE 18. Velocity at the point of entering an elliptical orbit with

respect to the sun and the flight duration for various angular distances

Velocity at the moment

of entering an elliptical

orbit with respect to the

sun, km/sec

Angular distance,

degrees

Flight duration,

months

27.28

26.28

25.28

24.28

23.28

22.28

To Venus

180

110

89

36

66

59

4.87

3.33

2.83

2.52

2.33

2.16

32.71

33.71

34.71

35.71

36.71

37.71

To Mars

180

124

108

97

90

85

8.63

5.25

4.32

3.'/7

3.40

3.10

//

FIGURE 46. Positions of the earth and Mars for flight

to Mars along a semi-elliptical orbit

I and I- positions of the earth and Mars at the starting

moment of the ship; II and II- at the moment of arri-

val on Mars.

For flight from the earth to another planet, the moment of launching of

the spaceship should correspond to a favorable position of the planet with

respect to the earth. For example, positions of Mars favorable for flights,

as shown in Figures 46 and 47, occur approximately once every 2.14 years,

and favorable positions of Venus, once every 1.57 years. It is also neces-

sary to wait for a favorable position of the planets when returning to the

earth, which considerably increases the total duration of round-trip interplanet-

ary flight.
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According to one set of calculations, after reaching circular orbit around

Mars, or after landing on it, the waiting time for a return start to earth is

452 days. The total flight duration from the earth to Mars and back again

amounts in this case to 970 days, or 2 years 8 months.

I

I nodesoftbe
orbit of "Mars-l"

"It"'Direct'ran of vernal
equinox

FIGURE 47. Orbits of Mars and of the AIS "Mars I" projected

on to the plane of the earth's orbit. The simultaneous

positions of the earth and Mars (I and I- at the moment of
launch, and II and II- at the moment of approach of the AIS

to Mars) and the positions of the station itself between the

moments of launch and approach are joined by lines. Due

to the noncoplanarity of the orbits of the earth and Mars, the

station, as it approaches Mars, is put into an orbit with an

inclination of 2"37', approximately that of the orbit of Mars

Let us now consider the section of the flight of a spaceship in the sphere

of action of the arrival planet. The motion of the spaceship in the sphere

of action of the arrival planet is determined by its heliocentric velocity on

the boundary of this sphere and by the orbital velocity of the planet itself.

Let the ship have a heliocentric velocity Vent on the boundary of the sphere

of action of the arrival planet (Figure 48), and let the heliocentric orbital

velocity of the arrival planet be Vorb. To determine the velocity of the ship

with respect to the arrival planet it is necessary to subtract the arrival

planet's velocity from the ship's entrance heliocentric velocity vector.

If the resultant velocity V'ent is lower than the escape velocity at the

boundary of the sphere of action, the further motion of the ship with respect

to the arrival planet will be along an elliptical trajectory. If V_n t equals

escape velocity, the motion will be along a parabola, and if it exceeds

escape velocity, the path will be a hyperbola. Thus the magnitude of the

entrance velocityV_nt determines the ship's orbit within the sphere of

action of the destination planet.
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In principle, the spaceship can approach the boundary of the sphere of

action of a celestial body with a heliocentric velocity close to zero. It is

obvious that in this case the magnitude of the velocity Ven t will be close to

the orbital velocity of the planet, but oriented in the opposite direction.

The minimum value of V'ent occurs when the spaceship is moving opposite

to the planet's orbit. In this case, Went equals the algebraic sum Vorb--Vent.

But this will usually require an additional maneuver of the ship, so in most

cases V_nt will be equal to or greater than Vor b. The following ratio serves

as an index of the form of the orbit inside the sphere of action of the

destination planet
Vorb

Vc_ ( sp. ac. )

where Vc2(sp. ac.) is the escape velocity on the boundary of the sphere of

action of the destination planet.

FIGURE 48. Determination of the velocity of a space-

ship on the boundary of the sphere of action of the

arrival planet

1-heliocentric trajectory; 2- trajectory in the sphere

of action of the arrival planet.

Only for _ < l is elliptical motion of the ship with respect to the destina-

tion planet possible.

Thus, for example, in the case of Venus the orbital velocity is 34.99 km

and the zero-height escape velocity is 10.2 km]sec. On the boundary of the

sphere of action the escape velocity will be lower and the index _ will be

larger than 1. Consequently, spaceships which fall into the sphere of

action of Venus move within it along hyperbolic orbits. Such was the motion

of the first Soviet automatic interplanetary station to Venus within its sphere

of action.

The same can be said about the earth, whose orbital velocity is

29.8km[sec, and whose escape velocity at the surface is 11.2km/sec.

Ships returning to the earth from outer space will move along hyperbolic

orbits inside its sphere of action.

It is obvious that the value of _ will decrease for planets situated further

and further from the sun, resulting from a decrease in their orbital

velocities. However, a definite role is played in this matter by other fac-

tors too, and a qualitative estimate of the extent of variation of the index
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for outer planets, particularly for the giant planets Jupiter, Uranus,

and Saturn, is difficult.

_Orbit of the
planet

\

_\ a .. Ve'xit \ Z I

,/,',1 , /

"...7" "-..

FIGURE 49. Entrance and exit velocities of a space-

ship on the boundary of the sphere of action of the

destination planet. Perturbation maneuver:

1- heliocentric trajectory; 2- trajectory in the sphere
of action of the planet; I and II- positions of the planet

and its sphere of action at the entrance and exit moments

of the ship.

The ship's encounter with the destination planet is independent of the

form of the orbit, if the latter passes at a distance from the planet's center,

which is less than its radius. It is obvious that if the distance is larger

than the radius of the destination planet, the ship does not meet the planet.

Along parabolic and hyperbolic orbits the ship will emerge from the planet's

sphere of action and will continue moving along an orbit with respect to the

sun.

It is interesting to note that in the case of parabolic or hyperbolic motion

in the sphere of action of a planet, the velocities VEnt at the point of entrance

t .to the sphere of action and Vexlt at the point of exit from the sphere of action

are equal in magnitude, but have different directions (Figure 49). Let the

point A, be the point of entrance of the ship into the sphere of action of the

planet. The heliocentric velocity Vent of the ship at this point is determined

by the tangent to the heliocentric trajectory. The "planetocentric" velocity

Ven t (the velocity with respect to the planet) is equal to the vector sum of

the entrance heliocentric velocity and the orbital velocity of the planet,

taken with an opposite sign. The velocity Went determines the motion of the

ship with respect to the destination planet along the hyperbolic orbit A.B.

When the ship approaches point B the planet is at the pointP] 2 andpoint

B coincides with the point A2, the point of exit of the ship from the sphere

of action of the planet. At this point the exit "planetocentric" velocity Vexit

is equal to the entrance "planetocentric" velocity Vent, but their directions
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are different. This is due to the fact that the points A,and B of the "planet-

ocentric" trajectory are symmetric with respect to the planet.

We may now examine the exit heliocentric velocity of the ship. For this

purpose the vectors V_xitand Vorb at the point of exit must be added.

As can be seen from Figure 49, the entrance Ven t and exit V_xithelio-

centric velocities of the spaceship are different both in magnitude and in

direction. This can be used in space flight for maneuvering the spaceship

without any fuel expenditure.

This type of spaceship maneuver, i.e., flying along a parabolic or hyper-

bolic orbit in the sphere of action of some celestial body, is called a

perturbation maneuver.

z I

'_ I _ _ vent _ Sun

PI --

@
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FIGURE 50. Direct I and retrograde II motion of a spaceship reside

the sphere of action of the destination planet

We draw the reader's attention to another important fact connected with

the motion of a spaceship in the sphere of action of the destination planet.

Depending on the position of the entrance point of the spaceship to the sphere

of action of the destination planet, its motion with respect to the destination

planet can be direct as well as retrograde (Figure 50).

This should be taken into account in planning the flight, particularly

when it is necessary to land on the surface of a planet having a high

rotational velocity about its axis.

Parabolic and hyperbolic trajectories for flying around the destination

planet will obviously be used for automatic interplanetary stations in order

to study the nearest planets of the solar system. For spaceships launched

with the purpose of a prolonged study of the planet, and in the future also

for landing on it, these trajectories are inadequate. The best orbits inside

the sphere of action are elliptical with direct motion, and therefore the

problem of transfer from parabolic and hyperbolic to elliptical orbits arises.

This transfer can be accomplished only by either reducing the ship's

velocity with respect to the destination planet, or by reducing and simul-

taneously changing the orientation of the ship's velocity vector (Figure 51,
points A and B).
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Thus,a spaceshipcanbetransferredto anelliptical andevento a
circular orbit with respectto thedestinationplanet,eitherfor a prolonged
study,or for subsequentdescentto thesurface. Directdescentto the
surfaceof thedestinationplanetfrom parabolicandhyperbolicorbits is
alsopossible.

_'* _
( (.,/'

FIGURE51. Possiblevariations intransfer to an elliptical orbit

with respect to the destination planet {AV- the decrease in the
velocity by application of reverse thrust)

Finally, the last phase of the trajectory of an interplanetary flight is

descent to the surface of the destination planet. This is the most complicated

problem of interplanetary flight. For example, at the time of landing,

the spacecraft with the dogs Belka and Strelka had a velocity of 0.06 to

0.Skm/sec, whereas in orbit at a height of 300kin, its velocity was about

8km/sec. Consequently, on the descent section, the flight velocity has to

be reduced by a factor of one thousand or more /22/. This example indi-

cates the difficulties which the scientists face in solving this problem.

The problem of a safe landing on the surface of the destination planet

can, in principle, be solved in two ways: by means of rocket engines and

by using aerodynamic forces, or by a combination of the two. However,

it should be borne in mind that aerodynamic forces can be used only when

the destination planet has a sufficiently dense atmosphere (earth, Venus,

and others).

The first method of landing requires large energy expenditures, first,

to reduce the velocity of the ship, and second, to compensate for the

gravitational force on the descent phase. The relative energy expenditures

for descent by the first method can be determined from the magnitude of

the characteristic velocity, equal to the sum of the ship's velocity with

respect to the destination planet at the beginning of the descent phase, and

the compensation velocity for the gravitational force (Table 16).

The high characteristic velocity of the descent phase is one of the

reasons for the small payloads of ships with engines using existing chemical

fuels. Thus, for example, when using propellant with an exhaust velocity

of 4000 m/sec, the ratio of the payload to the weight of the whole ship
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amounts,in thecaseof landingontheearthandonVenus,to lessthan10%,
onthemoon,from 30to 60%,andonMars, from 15to 30%. In thecaseof
landingonJupiterandSaturn,theweightof thepayloadwill bepractically
zero]2].

TABLE 16. Examples of characteristc velocities for landing on

the surface of the earth, the moon, and other planets

Characteristic landing velocity, km/sec

Planet

Earth ........

V_nus ........

Mars ........

Jupiter .......

Saturn ........

The moon .....

from a parabolic

orbit

13.0

12,0

5.8

68.5

41.0

2.5

from a c_cular

orbit at a height
of 1000 km

8.1

7,4

3.4

46.0

27.5

1.5

If there is an atmosphere at the destination planet it can be used for

descent by the second method. Two types of descent with aerodynamic

braking are possible: descent along a ballistic trajectory and descent along

a gliding trajectory. In the first case the ship without lifting surfaces

moves with a zero angle of attack.

The disadvantages of this method are the tremendous braking decelera-

tions and very high final velocities of the spaceship. For safe landing in

this case, braking parachutes have to be used. In addition, such a descent

is accompanied by the release of a huge amount of energy. The kinetic

energy possessed by the spaceship is transformed into heat. As a result

of this, the temperature of the air-stream flowing around the ship rises

and the body of the ship is intensely heated. Thus, according to one calcu-

lation, for each kilogram of weight of a ship descending to the surface of

the earth, about 5500 kcal are released. Even for a ship of comparatively

small weight, about 450 kg, a huge amount of heat is released -- as much

as 2.5 million kcal. This energy is sufficient to destroy a ship of any

normal construction ]22].

One of the effective ways of dissipating the heat received by the space-

ship is to use a protective layer for the body. This layer, also called an

ablative shield, consists of a material which absorbs a great amount of

heat in melting and evaporating. One such material is beryllium oxide.

For thermal protection of a ship weighing 450 kg descending in this way to

the earth, it is necessary to evaporate approximately 210 kg of beryllium

oxide ]22].

Another method for combating the thermal danger on the descent phase

is to give the spaceship a special aerodynamic form. It is assumed that

for this purpose the best configuration is a blunt nose. With this form,

compression and intensive heating of the air essentially occurs in front of

the ship, and the forward section of the ship is heated to a comparatively

low temperature (1100to1300°). The rest of the ship's surface is outside

the zone of intensive air heating and therefore remains practically
unheated / 22/.
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Whatis thepossibletemperaturerise in thezoneof air compressionin
front of a descendingship? In foreignliteraturethefollowingdataare
givenfor a spaceshipin theform of a disk, enteringtheearth'satmosphere
at anangleof 45° to the horizon with a velocity of about 11.2 km/sec: the

pressure on the frontal surface of the ship facing the stream exceeds the

pressure of the surrounding air by a factor of 1085, and the temperature

may reach 50,000 °.

The higher the relative entrance velocity into the atmosphere, the higher

the rate of heat production. Trajectories of spaceships therefore should be

planned so that the entrance of the ship into the dense layers of the atmos-

phere will be in the direction of the diurnal rotation of the destination planet

with its surrounding atmosphere.

Gliding descent at small negative inclination angles of the velocity vector

to the horizon makes it possible to reduce gradually the velocity of the ship

under low braking deceleration and comparatively little heating of the ship's

body. In addition, a gliding descent makes possible range and direction

maneuverability for landing at a fixed point on the surface of the destination

planet. The duration of a gliding landing and correspondingly the distance

covered naturally exceed those of descent along a ballistic trajectory.

It is possible to begin a gliding descent from those heights where the air

density provides sufficient lifting force. If the lifting force of the wings is
small, rocket engines giving vertical thrust must be started in order to

avoid an excessively steep descent and the resulting large braking loads

and heating of the ship. In addition, this method of descent involves

tremendous technical difficulties. It is necessary first of all to ensure

stability and control of the ship within a very wide velocity range from the

huge cosmic to low landing velocities, which clearly requires supporting

surfaces of variable area. The external shell of the ship must also with-

stand heating to between 1500 and 2000 ° .

blt

FIGURE 52. Descent trajectories of spaceships:

1- descent phase outside the dense layers of the atmosphere; 2- atmos-
pheric phase of the trajectory in the case of ballistic descent; 3- atmos-

pheric phase of the trajectory in the case of gliding descent.

The possible descent trajectories of a spaceship to the surface of the

earth from a circular orbit depend on the additional velocity AV which is

given to the ship in the direction opposite to its orbital motion. The angle

of entrance into the atmosphere also depends on the magnitude of this

velocity (Figure 52). The higher the additional velocity, the larger the

entrance angle. For a velocity of 0.2 to 0.3 km/sec, the entrance angle is

a few degrees. Subsequent motion follows either a ballistic or a gliding

trajectory.
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On19 August, 1960, the second Soviet spaceship with living beings on
board was launched into orbit as an earth satellite. The command for

landing in a designated region was given on the ship's 18th revolution. From
this moment until an altitude of 7 km above the surface of the earth was

reached, the ship traversed a distance of 11,000km. The maximum decel-

eration under braking reached 10 g. At a height of 7 to 8km the container

with the animals was catapulted from the ship's cabin. The container landed

at a velocity of between 6 and 8m]sec, and the ship's cabin, at 10m]sec.

The deviation of the actual from the designated landing point amounted to

less than 10 km, a testimony to the successful solution of the extremely

complicated problem of descent to the surface of the earth. This experience

will be of assistance in solving the problem of descent to the surface of

other celestial bodies.

It should be noted that all our considerations were based on the assump-

tion that the planes of the orbits of the departure and destination planets

coincide. This is however not completely true, as can easily be seen by

comparing the inclinations of the orbits of the planets of the solar system

(see Figure 11).

The fact that the planes of the orbits of the departure and destination

planets do not coincide, or are noncoplanar, creates additional difficulties

in the execution of interplanetary flights. It requires maneuvering the ships

in flight, and consequently, the solution of a series of additional navigational

problems.

§7. Flight Trajectories to the Moon

In view of the comparatively short distance from the earth to the moon,

the first spaceships flying to other celestial bodies will go to the moon. In

fact, the minimum distance from the earth to Mars is 54 million kin,

whereas the mean distance from the earth to the moon is only 384,400 kin,

i.e., over 135 times shorter than the distance to Mars. It should also be

noted that the trajectories of spaceships do not follow the shortest distances

between celestial bodies.

In principle, various types of flight to the moon are possible: direct

flight to the moon, flight around the moon with return to the earth, orbital

flight around the moon, and flight to the moon with entrance into the orbit
of an earth satellite.

For each of these types both direct starts from the earth and starts from

an orbit around the earth are possible. The initial phase and orbital flight

around the earth have already been described in the previous chapter.

Therefore, we will not deal with them here, and will refer for simplicity

to a ship starting directly from the earth.

The first type is a direct flight to the moon. For flying from the earth

to the moon orbits of any form can in principle be used. However, as in

the case of interplanetary flights, orbits which require minimum energy

expenditure are of particular interest. These earth-satellite elliptical

orbits whose apogees coincide with the orbit of the moon (Figure 53a).

When starting from point A of the terrestrial surface, the launch point

is the perigee of the orbit. When starting from point B, the perigee is
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situated inside the earth (P1_), and when starting from point C, the elliptical

orbit is transformed into a rectilinear one. The perigee of this orbit is

situated at the center of the earth. These three orbits are not equivalent

from the energy point of view. The smaller the semimajor axis of the orbit,

the lower the energy expenditure in moving along it. Consequently, the

most advantageous is the third orbit. However, as is shown by calculations,

the difference in energy expenditure for the first and third orbits is very

small, and can be practically neglected. In fact, the required initial

velocity for flight along the third orbit is approximately 11.09 km/sec, and

along the first orbit, 1 to 2 m/sec more, which amounts only to hundredths

of a percent.

Thus, in spite of the fact that for each starting point on the earth there

is an elliptical minimum-energy orbit, they all require practically the

same initial velocity --about ll.09km/sec. This is approximately 1% lower

than the second cosmic velocity for the surface of the earth. There are

also other orbits along which lunar flight is possible (Figure 53b): an

elliptical orbit for landing on the opposite side of the moon, and parabolic

and hyperbolic orbits.

F_rth

b

FIGURE 53. Orbits for flights to the moon in the case of a ship starting directly
from the surface of the earth

a- minimum-energy elliptical orbits; b- other orbital types; I and 2- ellip-

tical orbits starting from the points A and B; 3- radial trajectory; 4- elliptical

orbit for landing onthe opposite side of the moon; 5- parabolic orbit;

6- hyperbolic orbit (IV, V, and VI - positions of the moon at the moment of

launching for flight along orbits 4, 5, and 6, respectively).

It is perfectly clear that hyperbolic and parabolic orbits give shorter

flight periods to the moon. What is the possible duration of such a flight?

Along minimum-energy orbits it is practically the same, i.e., for the

mean distance from the earth to the moon, approximately 5 days. When

flying along orbits requiring higher initial velocities, the flight duration

sharply decreases. Thus, for an initial velocity which is higher than the

minimum by only 0.05 km/sec, the flight duration is reduced by a factor of

two, For an initial velocity equal to the second cosmic velocity, which

corresponds to a further increase in the velocity by approximately
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0.05 km/sec, the flight duration to the moon is two days, and for an initial

velocity exceeding the escape velocity by 0.5 km/sec only one day. However,

further increases in the velocity result in a proportionately smaller and

smaller decrease in the flight periods.

When flying along any orbit, as the lunar ship gets farther from the

earth, its geocentric velocity continues to decrease. The instantaneous

value of the velocity can be determined by the formulas given above (§3,

this chapter).

Let us now consider the motion of a spaceship in the sphere of action of

the moon. The entrance selenocentric velocity, as we now already know,

is equal to the vector difference of the geocentric velocity of the ship on the

boundary of the moon's sphere of action and of the orbital velocity of the

moon.

The orbital velocity of the moon is approximately 1.02km/sec, and the

escape velocity on the boundary of its sphere of action is Vcl(sp.ac.) =

= 0.385kin/see. Therefore the index of the orbit form inside the moon's

action is _ > I. This indicates that inside the lunar sphere of action

characteristic orbits are hyperbolic. Consider the case where the ship has

a geocentric velocity equal to zero on the boundary of the sphere of action.

Its velocity with respect to the moon, the selenocentric velocity, is there-

fore equal to the velocity of the moon in its orbit around the earth, i.e.,

1.02km/sec, which considerably exceeds the escape velocity on the

boundary of the lunar sphere of action.

FIGURE 54.Hyperbolic trajectories for different entrance points of a space-

ship into the lunar sphere of action

Thus, at a distance of 66,000km from the moon the ship enters its sphere

of action, and its further motion with respect to the moon will be along a

hyperbolic orbit (Figure 54). The form of the orbit depends on the position

of the entrance point into the lunar sphere of action.

It is obvious that the ship will meet the lunar surface if its orbit

approaches the moon's center at a distance smaller than its radius (1740 kin).

All the previous considerations did not provide for a modification of the

ship's orbital parameters and for guiding it on the orbital section. The

accuracy to which the calculated orbital and basic launch parameters can

be maintained is therefore of interest.

We shall give for this purpose some calculated figures. An error in the

initial velocity of a lunar ship of only lm/sec, i.e., approximately of
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0.01%, results in a deviation of the point of the ship's encounter with the

moon by 250 kin. A deviation of the initial velocity vector from the calcula-

ted direction by 1 minute of arc results in a displacement of the point of

encounter by 200 kin. To be sure of hitting the moon, the error in the

initial velocity should not exceed a few meters per second, and the inclina-

tion of the initial velocity vector should be within 0.i ° ]6/.

Launching at the exact calculated moment is necessary because the plane

of the trajectory of the lunar ship turns in space together with the earth,

and also because the moon in its daily motion moves among the stars at the

rate of 13.2 ° per day. An error of I0 sec in the launching moment results

in a displacement of the point of encounter by 200 kin.

These data show the extremely stringent requirements on the accuracy

of the guidance systems of spaceships in the initial phase and on the

organization and preparation of the launching.

The possibility of guiding a spaceship on the orbital flight phase, i.e.,

on the passive phase of the trajectory, allows us to reduce considerably the

requirements on the accuracy of the launch parameters of the rocket.

However, correction of the orbit of the spaceship requires an accurate

determination of its current coordinates. This is one of the basic problems

of space navigation. The possible methods of its solution will be shown in

the following chapter.

, Lunar orbit _

FIGURE 55. Flight trajectory of the second Soviet lunar rocket

1- position of the moon at the launching of the rocket; 2- position of a hytx_ -

thetical comet on the rocket trajectory.

A brilliant example of flight to the moon is the flight of the Soviet lunar

rocket, launched on 12 September, 1959. We recall some of the data of

this first flight to the moon. The last stage of the rocket exceeded the

second cosmic velocity, and it therefore followed the rocket along a hyper-

bolic orbit (Figure 54). The velocity of the rocket with respect to the earth

on the boundary of the moon's sphere of action was about 2.31 km]sec.

Inside the moon's sphere of action, at a distance of 1000 km from its surface,

the rocket's velocity with respect to the moon was 2.97 km]sec.

The rocket entered the moon's sphere of action on 13 September, at

16 hrs 40 rain, Moscow time, and at 0 hrs 02 min 24 sec on 14 September

it reached the lunar surface. The duration of the flight was approximately
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one and a half days. The rocket container with the instruments landed near

the craters Aristullis, Archimedes, and Autolycus. The distance from the

landing point to the center of the visible disk of the moon was approximately

800 km. At the moment of impact, the trajectory was inclined at an angle

of 60 ° to the surface of the moon, and the selenocentric velocity was about
3.3 km/sec.

0 Lunar orbit

132

296 288 272 _i

2.0 . a. _ 7j ,.w.-
,.,_o .... w

FIGURE 56. Trajectory of a flight around the moon according to K. Erik and

G. Gamow (USA) (the figures give the flight time in hours from the launching
point; the broken curve gives the orbit of the same spaceship disregarding the
moon's influence)

Let us now consider the motion of a spaceship along trajectories taking

it around the moon. By this we will understand those which take the ship

beyond the orbit of the moon with subsequent return to the earth. Such

trajectories (Figures 56 to 59), as well as trajectories leading to a landing

on the moon, are of definite scientific interest for investigation of the moon

and the space near the moon. These will probably remain the only ones

for manned spaceships for a long time, since impacting trajectories require,

first of all, "soft landing, " and, secondly, take-off from the moon in order

to return to the earth. The solution of the latter problem is for the time

being distant; but the time will doubtless come when spaceships will start

from lunar cosmodromes to the earth and other planets.

The idea of flying around the moon was first proposed by Jules Verne in
his novels "From Earth to Moon" and "Around the Moon." His heroes

Barbiken, Nikolai, and Ardan, fly around the moon inside an artillery

projectile. Now lunar flight no longer seems fantastic, but powerful rocket

engines, rather than artillery, make it a possibility. It is obvious that

before long Soviet astronauts, like Jules Verne's heroes, will actually make

a remarkable journey around the moon.

Now it can be stated that the geometrical form of the moon-orbiting

trajectory, particularly where it passes through the-sphere of action of the

moon, can be most varied with respect to the earth. It was shown in the

previous section that the exit velocity with respect to the destination planet

is equal to the entrance velocity. This also holds true on the moon. But

with respect to the earth, both the magnitude and the direction of the exit

velocity may be different. Therefore, the trajectory of a vehicle after
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leavingthemoon'ssphereof actionwill in generaldiffer bothin form and
positionwith respectto theearthfrom thetrajectoryof flight to the moon.

Verysmalldeviationsfrom thecalcula-
Lunarorbit

Earth

FIGURE57. Trajectories of symmetricalflight

around the moon according to M.S. Lisovskaya
(USSR). The minimum distance of the trajec-

tory from the moon is 6378 km

some angle. As a result of this,

ted point of entrance of the spaceship

to the moon's sphere of action, as well

as small deviations of the velocity vector

may lead to a considerable deviation of

the actual return orbit from the predicted

one. This situation complicates the

accomplishment of a flight around the
moon with return to the earth. Such a

flight is apparently possible only on a

guided ship, which can determine the

errors in the motion parameters and

correct the actual trajectory.

When flying along a symmetrical

trajectory around the moon (Figure 57),

after leaving the earth's sphere of

action the ship will fly identically on

the two branches of the trajectory.

However, if on returning it does not
meet the earth (second and fourth

cases), it intersects the outbound branch

of the flight trajectory to the moon at

it can no longer fly along the previous

trajectory to the moon. Such trajectories are called unclosed.

A peculiarity of the trajectories shown in Figure 58 is the fact that their

last section is radial, directed to the center of the earth. This "alignment"

of the trajectory is made by the moon. As can be seen, such trajectories

are possible both in the case of a close approach to the moon (the upper two

trajectories) and in the case of a comparatively distant approach (the lower

trajectories). The flight time along round-the-moon trajectories which

come near the moon is 5 to 10 days.

Trajectories with a radial return section and symmetric trajectories

have the disadvantage that they do not provide for a possibility of safe

descent of the spaceship to the surface of the earth. We already mentioned

the necessity of a slanting descent at small angles to the horizontal. The

problem of the calculation of a trajectory around the moon with entrance

into the terrestrial atmosphere at small angles is called the special problem

of flight around the moon. Some of the possible trajectories for flight

around the moon with slanting return to the atmosphere, obtained by V.A.

Egorov, are shown in Figure 59.

A disadvantage of trajectories which come near the moon is that they

impose stringent requirements on accuracy in achieving the calculated

launching parameters.

Thus, for one of the round-the-moon trajectories with an initial velocity

of 10.92739 km]sec, the ship should pass 12,900km from the center of the

moon and return to the earth. If the initial velocity is lower than the

calculated value by only 10 m]sec (0.01 km/sec) or if the direction of the

initial velocity vector varies by 5 ° above the horizontal, the ship will either

collide with the moon, or will not pass over the center of the hidden side

of the moon ]19/.
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Lunar orbit Earth Lunar orbit 1_
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Earth
Earth Lunar orbit

Lunar(bit _ _ Moron

FIGURE 58. Orbital trajectories with radial section in

the return flight to the earth, calculated by V. A. Egorov

(USSR)

LunaorbitEathLuno th
'-Z%

\
Moon _._

Moon

Lunar orbit Earth

Luna Earth

'__ \_'_" on

FIGURE 59. Flight around the moon with a slanting

re-entry into the earth's atmosphere
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As the minimum altitude of the trajectory to the moon increases, the

requirements for the accuracy of the launch parameters become less

stringent.

Trajectories of periodical flight around the moon are of great scientific

interest (Figure 60). The period of revolution of the satellite ship of the

earth along the upper orbit is exactly half the revolution period of the moon

around the earth. Therefore, after one "idle" revolution without flying

around the moon, on the next revolution the ship passes the moon. The

ship flies around the moon once every sidereal month.

The revolution period of the satellite-ship along the lower orbit is 2/5 of

the revolution period of the moon (2/5 of a sidereal month).

&4t6Jt$ km

4174_ km

FIGURE 60. Trajectoriesforperiodicalflightaround the moon with

returntothe earth,accordingto A.Shternfel'd(USSR). calculated

withouttakingintoaccount lunarinfluence

An example of a practical solution of the problem of flight around the

moon is the flight of the third Soviet cosmic rocket, launched on 4 October,

1959 (Figures 61, 62, and 63). The objective of the mission was to obtain

photographs of the opposite side of the moon and to transmit them to the

earth, and therefore a number of special requirements were imposed on

the flight trajectory. The distance at the photographing moment could not

exceed 60 to 70 thousand kin. For normal operation of the camera orienta-

tion system during the photographing of the moon, the station and the moon,

and the sun had to lie approximately on one straight line. The flight

trajectory also had to make it possible for ground receiving points in the

USSR to receive the maximum amount of information from the station on the

first revolution, preferably at short distances from the earth.

In addition, to carry out a program of scientific investigations, it was

desirable to obtain a trajectory along which the automatic station would fly

for a sufficiently long time after going around the moon.

As can be seen from Figure 63, the automatic stations passed at a

distance of 7900 km from the center of the moon. At the moment of maximum
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FIGURE 61. Spatial scheme of the flight trajectory of the AIS to the moon

I, II, and Ill- positions of the moon on its orbit at the moments when the AIS started,

approached the moon, and returned to the earth, respectively.
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2iX Za.X

x
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F1GURE 62. Form of the trajectory of the AIS from the direction of the vernal equinox. The positions of

the AIS and of the moon on the orbits are given for 0300 hours Moscow time each day
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approach,thestationwassituatedsouth of the moon (Figure 62). Due to

the moon's attraction, the station's trajectory was then deflected to the

north. The deflection was so large, that the return to the earth was from

the northern hemisphere. After flying past the moon, the height of the

station above the horizon for observation points in the northern hemisphere

increased each day. As another result, the possible time intervals for
direct radio communication with the station increased.

Photo

opposite side of

the moon

2_X

27_

FIGURE 63. Projection of the orbit of the AIS on the plane of the terrestrial

equator. The positions of the AIS and of the moon on the orbits are given for

0300 hours Moscow time each day

In returning to the earth on the first revolution, the station approached

to a distance of 47,500 kin, i.e., outside the dense layers of the terrestrial

atmosphere, and continued its flight along an elongated orbit, nearly

elliptical. The greatest distance of the station from the earthwas 480,000 kin.

Due to the perturbing action of the sun, the height of the orbit's perigee

gradually decreased and after several revolutions, in returning to the earth,

the station had to enter the dense layers of the atmosphere and was

destroyed.

Artificial satellites of the moon, like those of the earth, make it possible

to obtain valuable scientific information on our nearest cosmic neighbor.

In the following example we show the possibility of creating an artificial

satellite of the moon, in principle.

Suppose a spaceship moves along an elliptical trajectory (Figure 64), so

that, at apogee on the boundary of the moon's sphere of action, its geo-

centric velocity is approximately 0.2 kin/see. At this point the ship's

velocity increased by means of a rocket engine to 0.Skm/sec. As can be
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seenfrom thevelocitytriangle, theentranceselenocentricvelocitybecomes
approximately0.24km/sec. Thisvelocityandits directionmaketheship
movealonganelliptical moon-satelliteorbit. However,theorbit of such
alunar satelliteleavesits sphereof action,andthereforeit canbeassumed
thatonthefirst revolutionstheshipwill nolongerbea satelliteof the
moon.

V _ .._---., Sphere of action
n_oon - 1 km/sec / %,_of the moon

Ven t = 0.8km/sec

V'_::::_II_V 'ent _ 0.24 km/ sec
• _ooo

_7_'_Sph_e of action

Earthg O..?ff_%__ _%

FIGURE 64. Possible scheme of launching a spaceship into an orbit of

a temporary satellite of the moon; AV is the additional velocity given

by the engine's thrust

Other ways of solving the problem of the creation of an artificial satellite

of the moon are possible. For example, it is possible to create a satellite

moving along a circular orbit on the boundary of the lunar sphere of action.

The necessary launching conditions and required velocity movement on the

boundary of the lunar sphere of action are readily determined.

We now consider briefly the conditions and trajectories for take-off
from the moon in order to return to the earth. In order to reach the

boundary of the sphere of action of the moon, a spaceship starting from its

surface should be given a velocity of 2.344 km/sec. But with this initial

velocity the ship will not return to the earth, because it will reach the

boundary of the lunar sphere of action with zero selenocentric velocity. But

since in this case the velocity of the spaceship with respect to the earth

(its geocentric velocity) will be equal to the orbital velocity of the moon,

1.02 km]sec, the ship will become an earth satellite.

Even take-off from the moon with the required escape velocity does not

make it possible to return to the earth. In this case, the selenocentric

velocity on the boundary of the lunar sphere of action will be 0.385 km/sec,

which is considerably lower than the oribtal velocity of the moon.

The simplest solution of the problem of return to the earth will be when

the ship reaches the boundary of the lunar sphere of action with a selenocen-

tric velocity equal in magnitude to the orbital velocity of the moon, but

pointing in the opposite direction. The take-off velocity from the surface

of the moon required for this purpose is 2.556km/sec, and the geocentric

velocity on the boundary of the lunar sphere of action becomes zero. The
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ship will move along a radial trajectory towards the center of the earth

(Figure 65). The "fall" of the spaceship will last for five days, and it will

reach the surface of the earth at a velocity of 11.1 km]sec.

Sphere of action

f the moon

oon =

_/ Vexit = o

_._ v'exit= lkrn/sec

//
Earth

FIGURE 65. Radial return trajectory to the earth

Sphere of action

V'exit _ = i km/see_ "_

V'exit = 0.Tkm/sec Ve_cit _ ^ _ _

Vmoon---lkm_@:O'2k_/Se_ _

1

Rota.o of /
the earth "_/

FIGURE 66. Elliptical return trajectory to the earth (one type)

More convenient return trajectories requiring, by the way, smaller

energy expenditures, are also possible. One of them is an elliptical

trajectory (Figure 66) with a take-off velocity from the surface of the moon

equal to 2.5 km/sec. In this case, the exit selenocentric velocity will be

0.7 km/see, and the geocentric velocity, 0.2 km/sec. Besides the lower
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energy expenditures, this trajectory is more advantageous from the

viewpoint of soft landing of the spaceship.

Other trajectories are also possible. Such geocentric trajectories can

be elliptical, parabolic, or hyperbolic orbits intersecting the surface of

the earth. But the last two require large energy expenditures, and, more

important, do not provide soft landing on the earth.

§8. Motion of Spaceships with Respect to the Earth and Stars

Let us now consider the peculiarities of the motion of spaceships with

respect to the surface of the earth and to the stationary stars. These

problems are important for the navigation of spaceships.

In order to navigate ships, determine their equatorial coordinates, find

the landing region, and solve other important problems, it is necessary

to know the laws of motion of spaceships with respect to the earth and the

stationary stars.

Considering the motion of spaceships with respect to the surface of the

earth, it is necessary to bear in mind that the unperturbed orbit of a space-

ship is a plane curve, stationary with respect to the stars, and that the

earth rotates about its axis with an angular velocity of approximately
15 deg/hr.

The trajectory of a satellite of the earth with respect to the earth's

surface can be expressed by the relationship:

tan?=sin (wiT q- _k)tan i,

where _0is the instantaneous latitude of the satellite: ¢0_ is the sum of the
angular rotation velocity of the earth and the mean precession velocity of

the orbit; T is the time of flight of the satellite from the ascending node

of the orbit to the given point of the terrestrial surface; Ak is the difference

in longitudes between the position of the satellite and the ascending node of
the orbit.

It is obvious that the maximum latitude, equal to the inclination of the

orbit (_=i), will occur when sin(0_T+AL) = I. Thus, the trajectory of a

satellite lies on the surface of a spherical belt of the earth, bounded by the

parallels with the latitude _ = ± i.

"Vostok" type satellites and spaceships, whose orbits had an inclination
of 65 °, moved within the latitudes ± 65 °, and the satellites launched in 1962

and 1963 with an orbital inclination of 49 ° moved within the latitudes ± 49 °.

The orbit of a satellite is stationary with respect to the stars, and the

diurnal rotation of the earth is from west to east. Consequently, each

successive loop Of the trajectory of the satellite on the surface of the earth

is displaced to the west (Figures 67 and 68). It is easily seen that this

displacement with respect to longitude, AX, can be found by multiplying the

sum of the angular rotational velocity of the earth and the precessional

velocity of the orbit by the revolution period of the ship:

_,_o_ p.

One may also arrive at this conclusion by analyzing the above-given

formula which determines the trajectory of a satellite with respect to the
surface of the earth.
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The"trajectory" of stars is determinedonlybytherotationof theearth,
asa result of whicheachstar movesalonga parallelwhoselatitudeis
equalto thedeclinationof thestar (Figure68).

FIGURE67.Trajectoryof a satellite with orbit inclination of 40" with respect to the surface of
the earth

1, 2, and 3- the first, second, and third loops of the trajectory, respectively.

[N.B. --This is clearly a plot of an American launching from Cape Kennedy, although this is

not acknowledged in the Russian text.]

As an interplanetary ship gets further from the earth, its angular velocity

with respect to the earth decreases, and therefore at very great distances

from the earth the trajectory of a spaceship with respect to the surface of

the earth will be determined, like the trajectories of stars, only by the

earth's diurnal rotation. On the terrestrial surface it will coincide with the

parallel whose latitude is equal to the declination of the spaceship at the

given time (Figure 69). This coincidence, as can be seen from the

figure, is greater the farther the ship from the earth.

The position of the spaceship at a given moment with respect to the

stars is determined by its equatorial coordinates, the right ascension

a and the declination 6. The apparent motion of a ship among the stars

can be very complicated, since it is determined both by the motion of

the ship and by the motion of the earth in its orbit with respect to the

sun (Figure 70). As seen from the figure, with respect to the sun, the

spaceship has a velocity higher than that of the earth, and therefore in

equal time intervals it traverses larger distances along its orbit. An

observer on the earth projects the ship on to the celestial sphere.

First he sees the ship moving in one direction, then in the opposite

direction (retrograde motion). Such motion with respect to the stars

is, by the way, characteristic also of the planets (Figure 71). The

retrograde motion of Mars, for example, lasts for 70 days. The arc

of its retrograde motion on the celestial sphere is about 16". Mars

makes such loops in its apparent path among the stars once in 780 days,

Jupiter, once in 399 days, and Saturn, once in 378 days.
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4

Apparent motion

of the ship

among the stars

FIGURE 70. Apparent motion among the stars of a spaceship traveling

to Venus

1, 2, 3, 4- positions of the earth and the spaceship after equal time inter-

vals; 1', 2', 3', 4'- apparent positions of the spaceship among the stars (on

the celestial sphere).

Right ascension

2t' i t, #h

• f

_, Cetus L __-.,IId H

FIGURE 71. Apparent motion of Venus (the broken curve) and

of the first Soviet automatic interplanetary station to Venus

among the stars (the figures give the positions of the station and

of Venus in 10-day intervals)
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These in general are the peculiarities in the motion of spaceships with

respect to the surface of the earth and with respect to the stars.

§9. To the Stars

Remote suns twinkle in the depths of the night sky. How many riddles
they hide' What is the mechanism of the formation of stars and star

systems ? What is the source of the huge amount of energy released by the

stars ? What is their composition? What are the reasons for the periodic

variation of the color of certain stars ? What is the reason for the fantas-

tically high density of one of the star groups ? Do stars, like the sun,

have planetary systems ? These are only some of the important questions

asked about the stars. Whatever guesses, hypotheses, and assumptions

are made can for the time being be based only on study of the radiation of

stars and star systems by telescopes and radio-telescopes, and on analysis

of the variation of their positions. The difficulties of studying stars are due

to their huge distances.

Automatic stellar stations and spaceships will be the only means of

bringing distant stars nearer to a terrestrial observer. They are the only

means of obtaining the large amount of objective scientific information
required to reveal the secrets of the stars.

Even now, after the flight of the first astronauts, flight to the stars

seems a fantastic dream. But only a few years ago, flights of man around

the earth on satellites, flights to the moon, and flights of automatic inter-

planetary stations to Venus and Mars seemed equally fantastic.

Mankind will hardly restrict itself to study of the solar system. The

time will arrive when powerful rocket systems will launch spaceships into

orbits to the near stars. The recent astonishing successes of science and

engineering instill confidence that this time will arrive and that the very

complicated problem of flight to the stars will be solved by man's genius.
It is still impossible even to list all the difficulties which scientists and

engineers will encounter in solving the problem of a stellar flight, but it

can be confidently asserted that most of them are due to their remoteness.

The first question to be asked is whether man's lifetime is sufficient to fly
to one of the nearest stars and return to the earth? What should be the

minimum velocity of a starship which is to visit the nearest stars ? Let us

consider this problem in more detail.

Table 17 gives a list of the closest bright stars, situated at a distance

of no more than 10 ps (the distances to these stars are given in parsecs and

light years).

Even a superficial look at the table leads to the conclusion that, if flight

to the stars is to be possible, the velocities of the spaceships intended for

this purpose must be tremendous, close to the velocity of light. But, as

is known, at velocities near the velocity of light, time is slowed down in

the moving reference system. The velocity of light is a constant quality,

and therefore with moving clocks the time units become longer, and the

length units become shorter in the direction of the motion. This should be

taken into account in the calculations of future astronauts.
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TABLE 17. Stars nearest to the earth and times of flight to them and back (flight duration by shipboard

clocks is 25 years)

Star designation

Distance to star

in par- in light

sees years

o :>.

°2
O

a Centauri 1.32 4.31 0.3284

a Cant_ Majoris(Sirius) 2.68 8.74 0.5734

¢ Eddani 3.30 10.76 0.6521

Ceti 3.32 10.83 0.6563

a Canb Minoris (Pro-

cyon) 3.44 11.20 0.66"/3

a Aquilae (Altair) 4.88 15.90 0.7861

Cassiopeiae 5.49 17.91 0.8230

Pavonis 5.95 19.40 0.8406

Hydri 6.58 21.45 0.8640

a Piscis Austrini 6.90 22.48 0.8742

Ursae Ma joris 7.69 25.08 0.8954

Orionis 7.81 25.47 0.8977

X Draconi_ 8.20 26.72 0.9056

y Leporis 8.20 26.72 0°9056

a Lyrae (Vega) 8.26 26.94 0.9072

I* Herculei 8.55 27.86 0.9126

71 Bootae 8,93 29.11 0.9188

Eridani 9.17 29.91 0.9226

I_ Virginis 9.90 32.28 0.9326

Gem inum (Pollux) 19 32.60 0.9337

i Herculei 10 32.60 0.9337

¢¢ O
0

S-d

26.5

30.5

33.0

33.0

33.6

40.5

43.5

46.2

49.7

51.4

56.0

56.7

59.0

59.0

59.4

61.1

63.4

64.9

69.2

69.8

69.8

= ,=

=

"O

1.5

5.5

8.0

8.0

8.6

15.5

18.5

21.2

24.7

26.4

31.0

31.7

34.0

34.0

34.4

36.1

38.4

39.9

44.2

44.8

44.8

Ea
'_, ._

£'2•a '_ >,

17.56

23.99

2"/.26

27.33

28.00

36.15

39.66

42.50

46.35

48.18

53.08

53.82

56.22

56.22

56.64

58.41

60.81

62.36

66.88

67.50

67.50

[N. B. There are some minor inaccuracies in Table 17. As will be seen, the last column should equal

the third plus half the fifth.]

Thus, the flight duration to a star according to the shipboard clocks and

to terrestrial clocks will be different. The following relationship exists

between the flight time t according to terrestrial clocks and the flight time

to according to shipboard clocks:

t _ to

Vl--k_

where k is the ratio of the flight velocity of the starships to the velocity of

light.

If the distance to the star is S light years, then the time of flight to the

star and back according to terrestrial clocks will be:

28

k
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Substituting this value for the flight time t in the previous formula, and

solving it for k. we obtain

k---_ ¢ 2st_ + 4s_

By this formula it is possible to calculate the value of the coefficient k,

for which a starship will fly to a given star and back in a time to according

to shipboard clocks. From k, as obtained by this formula, the correspon-

ding velocity V = kc can be computed.

In the first approximation, without dwelling on a detailed analysis of this

problem, we will consider that man has at his disposal 25 years of his life

for the flight. Besides the time for the flight, time is also required for

training, for data processing after the flight, and for rest. Table 17 shows

that even flight to the nearest star, a-Centauri and back, which would take

25 years by shipboard clocks, and 26.5 years by terrestrial clocks,

requires a velocity of 0.3254c. Crew members of such a starship, upon

returning to the earth, will be one and a half years younger than men born

on the same date who never left the earth.

For more distant stars, as can be seen from the table, the required

velocity, the flight duration by the terrestrial clocks, and the difference

between them and shipboard clocks all increase.

Even by shipboard clocks a duration of 25 years for such an "experiment"

is very long. Flight to stars situated at a distance of 10 ps and subsequent

return to the earth will occupy 69.8 years for people remaining on the earth.

Is it possible to reduce the flight durations and periods that must pass before

scientific information can be obtained from the flight ? This can be done,

in the first instance, by increasing the velocity of the starship. In principle

this measure is extremely effective for shortening the duration of flight

to the stars. Igowever, it is hardly necessary to demonstrate the complexity

of the problem of obtaining velocities near that of light. It is made more

difficult by the fact that with increasing velocity the mass of the spaceship

increases, and this in turn increases the energy expenditures necessary

for further increments in velocity. This is particularly true at velocities

near that of light. In the case of a 1½-ton spaceship flying at a velocity

of 11.2 km/sec, the mass increases by only one milligram, but the mass of

a proton whose velocity is increased by a factor of 27 thousand in an accel-

erator increases by a factor of more than 10 over its rest mass /9/.

The duration of a star experiment can also be shortened, if observations

are transmitted to the earth by the crew of the starship by radio immediately

after reaching the star. In this case the scientific information will be

received after a time equal to the flight time to the star by the terrestrial

clocks plus the distance from the star to the earth in light years (see Table

17). It should be borne in mind, however, first, that this method requires

the solution of the problem of communications over tremendous distances,

and second, that it is hardly possible to transmit from the ship to the earth

all the scientific information obtained by radio. In addition, as can be seen

from the table, the effectiveness of this measure is smaller, the greater the

distance to the star.

The theory of relativity therefore gives a positive answer to the question

of whether man can reach stars which are situated at distances considerably
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larger in light yearsthanthetime hehasfor theflight. Butevenwithout
touchingonthetremendoustechnicaldifficultiesconnectedwith theattain-
mentof velocitiescloseto thatof light, manyotheraspectsof this problem
areunclear. First of all, of course,is theproblemof man'sability to
live at velocitiesnearthevelocityof light. A completeanswerto this
problemcanbegivenonlyby correspondingexperimentswith living organ-
isms. Scientistsarealreadythinkingaboutthis.

Oneof themainpurposesof flights to stars will nodoubtbethesearch
for living organisms,particularlyin their higherforms, in thedepthsof
theuniverse. Inthis connection,anestimateof theprobabilityof detection
of higherformsof life by starshipsis of interest.

In thefirst chapterwesaidthataccordingto tentativecalculationsof
someastronomers,for eachmillion stars thereshouldbeontheaverage
oneinhabitedplanetarysystem. Consequently,theprobabilityof observing
inhabitantsin thedepthsof thecosmosina singleflight to thestars is
accordingto thesefiguresvery low, p_ = l0 -6.

On the basis of this probability, even if the number n of flights is quite

large, the probability of obtaining a positive result is negligible (Table 18}.

TABLE 18. Probability of one or more encounters with an inhabited planet in flights

(probability of encountering a single flight Pl = 10-6)

l z l0 0is .0Pn in % 0.0004 0.0006 0.0008 0.001 0.002 0.004 0.01 0.018

Let us now calculate the number of flights which is required to guarantee

a probability Pn of one or more encounters with an inhabited planetary

system. This probability can be solved by the formula

n_ Ig (I -- Pg)
lg (I -- Pl) '

some values of Pg calculated by it are given in Table 19.

TABLE 19. Number of flights ot a starship guaranteeing a probability Pg of one or more encounters

with an inhabited planetary system

Pg n Pg n pg n

0.1 53,200 0.5 350,000 0.90 1,162,800

0.2 112, 700 0.6 462,000 0.95 1,152,600

0.3 180,100 0.7 608,000 0.98 1.975,600

0.4 258, 000 0.8 812,800 1.00 co

Thus, if we assume that there should be one inhabited planetary system

per one million stars, the probability of encountering one such system even

in a hundred flights amounts to only 0.018%, and in order to have a 90%

probability of encountering an inhabited planetary system a tremendous

number of flights -- 1,162,800 ! -- is necessary. Many years would be

necessary for so many flights, even if starships were launched daily.

These pessimistic conclusions, however, are based on the highly

tentative assumption of scientists that there is only one inhabited planetary
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systemper onemillion stars. It is perfectlypossiblethatinhabited
planetarysystemsaremoreoftenencounteredin theuniverse. Latest
dataindicatethatinferior formsof life maybeencounteredin theuniverse
quiteoften. In addition,scientistsarealreadyatworkontheproblemof
detectinginhabitedplanetarysystemsfrom theearth. Maybewewill even
succeedin observing,from theearth, planetsinhabitedby intelligent
beings. It will thenbeunnecessaryto makesuchahugenumberof flights
for manto meetbeingssimilar to him, wholive nearothersuns.
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ChapterIII
BASICPROBLEMSOFSPACENAVIGATIONANDMETHODS
OFSOLUTION

._I. Basic Problems of Space Navigation

We may in general divide the basic problems of space navigation into

the following groups: selection and calculation of the ship's trajectory;

analysis of the motion along the preassigned orbit; orbit correction;

transfer to an orbit with respect to a celestial body; the flight target;

landing.

Most of these problems have been discussed in sufficient detail in the

previous chapters, and therefore we will here consider only two problems-

analysis of the motion along the preassigned orbit and correction of the

ship's trajectory.

These two problems are extremely important to the overall navigation

of spaceships. Due to the long flight duration, even to near celestial bodies,

and to the practical impossibility of accounting for all perturbations, the

deviations of the actual orbit from the calculated one may be considerable,

even for small errors in the calculated orbital parameters. For example,

take the case of flight to Venus. The flight duration, as was shown in the

previous chapter, is from 2 to 5 months. An accumulated time error of

only 10 minutes at the calculated exit point may cause a deviation in the

actual entry point into Venus' sphere of action of more than 21,000km. This

deviation amounts to more than 3% of the radius of Venus' sphere of action.

Such an uncorrected deviation may considerably modify the motion of the

spaceship within Venus' sphere of action as compared with the calculated

motion. Even this very simple example shows the need of solving the

problem of analysis and correction of the trajectory of a spaceship.

In addition, it should be borne in mind that any phenomena or scientific

data observed by the crew of a spaceship should be "fixed" in space. In

other words, the crew should note not only the time of the phenomenon or

of the scientific observation, but also the observed location and the ship's

coordinates at that moment. Consequently, it becomes necessary

periodically to determine the actual coordinates of the ship.

Finally, the analysis of the ship's motion, and in particular the deter-

mination of its position, makes it possible to calculate the elements of the

actual orbit along which it moves. This is also important, since it makes

possible not only controlling entrance into the precalculated orbit, but also

calculation of the ephemeris of the ship, i.e., prediction of its further

motion.

Which elements should be determined in the analysis ? First, the spatial

coordinates of the ship must be determined, but this is insufficient. In
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general, the purpose of space flight is to reach other celestial bodies

moving at high velocities in space. It is possible to carry out the flight

rigorously along the preassigned trajectory and not to fall into the sphere

of action of the destination planet. The latter may occur when the flight

regime is not followed with respect to time. Consequently, timing of the

motion along the preassigned trajectory must also be analyzed.

It is true that the error in the arrival of a spaceship at a calculated

point will be mainly determined by the timing errors of the launch or the

transfer from one orbit to another. All the remaining causes will probably

not result in large errors. However, as was already shown in the example

above, even small errors in the time of arrival at calculated points of the

trajectory may considerably modify the subsequent motion of the spaceship

and make it more difficult to reach the target.

Naturally such an important motion parameter as the velocity of the
spaceship or its components must also be controlled. This is so obvious

that it does not require any explanations. In certain cases a need may also

arise for determining in flight the accelerations of the ship and their

components.

One of the basic methods for locating the path of an airplane or ship is

based on the determination of its position lines. The position line of an

airplane is a line on the surface of the earth of possible projections of the

airplane. For an airplane situated above any of its points, the measured

parameter is constant. That is, the position line is the locus of points

corresponding to the measured value of the parameter. The airplane is
always situated over one of its points at the moment of measurement of the

given parameter.

The geometrical form of the position line is determined by the parameter

being measured. For example, the distance from an airplane to a ground

station is measured by a radio system to be 185 km. We cannot determine

from this the coordinates of the airplane at the given moment, but we do know

the airplane is over one point of a circle on the surface of the earth with a

radius of 185 km and center at the ground station. In this case, the position
line is a line of equal distances, a circle.

To the measured course angle at the ground station corresponds a line

of equal azimuths, a line on the surface of the earth at all points of which

the azimuth to the station is constant. The azimuth of an airplane or ship

measured from the ground by means of a radio direction finder corresponds
to a great circle on the surface of the earth.

Thus, in order to determine the position line of an airplane or ship it

is necessary to measure some parameters, and the location of the airplane

or ship is the intersection point of two position lines, corresponding to the

two parameters measured simultaneously. Comparison of the position

obtained this way with the precalculated one determines the deviation of the

airplane or ship from course. Comparison of the time atwhich the position

was determined with the precalculated flight schedule makes it possible to

find out how the flight plan is maintained. Finally, from the distance

between two positions of the airplane and the travel time, the actual velocity

of the airplane can be easily determined.

This method can also be used in space navigation, but in this case the

measured parameter corresponds not to a position line, but to a position

surface. For example, suppose a distance from the spaceship to the earth
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is onemillion km. Thecrewof theshipknowsthattheshipis situatedat
oneof thepointsof spacelyingonemillion km from theearth. All these
pointsform onepositionsurfaceof thespaceship,a spherewhosecenter
is at thecenterof theearth, andwhoseradiusis onemillion kin.

Whatparametersmaybeusedto determinethepositionsurfaceof space-
ships? Theymayincludethedistanceto acelestialbody,theearth, the
moon, the sun, and so on, measured by radio-electronic methods from the

spaceship, or the distance from the earth to the ship, measured from the

earth. It is also possible to measure optically from the ship a parameter

of a celestial body such as its apparent angular diameter.

In order to determine the position surface one can also measure the

angle between the lines from the ship to the centers of two planets, the

centers of a planet and the sun, or a star and the center of a planet or the

sun. The parameter determining the position surface of the spaceship can

also be some direction from the surface of the earth to the ship, measured

by radio-electronic or optical methods. These might include the azimuth

of the spaceship and its height above the horizon. It is possible to measure

the Doppler shift of the frequency of the signals received on the earth from

the spaceship's radio, as well as the shift of the signals emitted by a radio

transmitter on the earth. A position surface of a spaceship can also be

obtained by measurement of the phase difference between signals of the

ship's radio transmitter as received by two radio stations situated some

distance apart on the earth.

It is also possible to measure some other parameters, or to use sums

or differences of some of the above-indicated parameters in order to

determine another position surface of the ship. These might include sums
or differences of the distances to two celestial bodies and sums or differ-

ences of the angular diameters of two celestial bodies.

$2. Position Surfaces of Spaceships

Let us now determine the geometrical form of the position surfaces

corresponding to the above parameters.

As is already known, the distance to a celestial body measured from a

spaceship, or the distance to the spaceship measured from the earth

corresponds to a spherical position surface (Figure 72a), whose center is

at the center of the celestial body (the earth). If the measured distance is

D, and the coordinates of the center of the planet (the earth) in the selected

rectangular coordinate system are X, Y, Z, then the equation of the sphere
will have the form:

(x-- Xp + (y-- Vp + (z -- z)" = (R + Op,

where R is the radius of the planet.

For spaceships which fly near the earth, it is expedient to choose the

origin of the coordinate system at the center of the earth. In this case when

measuring the distance to the earth, the equation of the sphere is

xS q- Ys -I- z j _-- (R + D) s.
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It canbeeasilyshownthatin thecaseof measuringtheapparentangular
diameterof aplanetor thesun, thepositionsurfacewill alsobea sphere
(Figure72b),sincetheapparentangulardiameterofthecelestialbodyis
thesameat all pointsequidistantfrom its surface. Theequationof the
positionin this caseis

(x-- X)_ ÷ (y -- Y)_ + (z -- Z) -_-- R_

2

where _ is the angular diameter of the celestial body (the sun).

M - M

a b

FIGURE 72. Spherical position surface of a spaceship determined

a- by the distance D to the planet; b- by the apparent angular diameter p of

the planet.

FIGURE 73. Cross section of position surface (cyclide) of a spaceship

=- the angle between the centers of the two planets; M, and M, - different

positions of the ship.

Let us now assume that the angle a between the centers of two planets

Pl I and Pl 2 is measured from the spaceship (Figure 73). In the plane of the

figure, the position line corresponding to the measured parameter a will

be circular arcs passing through the centers of the planets, since the planets

are subtended at the same angle from each of their points. In space, the

position surface is obtained by rotating the arcs of these circles with respect

to the axis Pll--P12. This type of surface is called cyclide. Its equation in

a bipolar coordinate system can be represented in the form:

l_= R_ -J-Rg -- 2RzR_cosa,
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wherel is

the formula
the distance between the centers of the planets calculated by

l' = (X_ -- Xl)' + (Ys -- Yl) _ + (Z, -- Zl) _,

Rt and Rz being the distances from the ship to the respective planets

determined by the relation

R_= (x -- x_)2+ (y -- y,)_+ (z-- z,)_.

Let us now consider the form of the position surface formed by the angle

between the line of centers of planet and spaceship and that of planet and

star. We shall use a rectangular coordinate system whose origin is at the

center of the planet. The Z axis will coincide witb the planet-star line (Figure

74). Assuming that the spaceship is at point M, a'_A4OZ, is the angle

between the two lines of centers. Because the stars are so distant, light

rays from them are received in parallel beams, and therefore the angle

will be constant at all points of a circular conical surface. The vertex of

the surface is situated at the center of the planet, and its axis coincides

with the striaght line from the planet to the star. In the selected coordinate

system the equation of a conical surface can be represented in the form

xg+y_ _ tanJ_.
z !

To the star

HGURE 74. The position

surface of the spaceship as

a circular cone

*- the angle between the

ship-planet and starshlp

lines (spaceship at the point

M).

X

FIGURE 75. Plane position surface of a spaceship

a- the azimuth of a ship shuated at the point _,. or

Mj •

Let us now determine the geometrical form of the position surface

obtained when the earth is the reference point for location of the spaceship.

Suppose a direction finder is situated at a point A on the earth (Figure 75).

118



It is obviousthatto themeasuredazimutha of the ship corresponds a

position surface which is a plane, containing the AZ axis. The equation

of a plane in the selected coordinate system is:

tan = = !.
X

When the elevation of the spaceship above the horizon, or its altitude

angle is measured from the earth, the position surface will be a circular

cone whose vertex is at the point where the elevation measurement was

made, and whose axis is along the local vertical.

Next, let us consider the position surfaces which are obtained by

measuring the Doppler shift of the received signal frequency. The Doppler

effect is the variation of the frequency of a signal received when the trans-

mitter or receiver is moving. Doppler frequency shift, or Doppler

frequency, is the term applied to the difference between the frequency frec

of the signals received and the frequency rtra of the signals transmitted:

F_----hec--ltra.

Suppose the transmitter is mounted on a spaceship, and the receiver is

at the point A on the earth (Figure 76}. The Doppler shift of the received

signal in this case is given by the relation:

Fd = 1tr---A--_PCOSp,
C-

where c is the propagation velocity of the radio waves, and _ is the velocity
of the ship.

For constant /tra and 17,as can be seen from the formula, the frequency

shift depends only on the angle _ between the velocity vector and the

M

HGURE 76. Radial component of the vel-

ocity of a spaceship measured by the Dop-
pler shift

direction to the receiver. Consequently,

at all points of space with the same

value of the angle _, the Doppler

frequency shift will be the same. But

points with equal values of the angle
form coaxial circular conical surfaces

whose common vertex is at the trans-

mitter and whose axis is along the

velocity vector _ Consequently, measure-

ment of the Doppler frequency shift gives

the position surface of the spaceship in
the form of coaxial circular cones with

a common vertex (Figure 77).

Notice an important feature of these

position surfaces. The opening of the

cone is determined by the angle _. On

the straight line coinciding with the

velocity vector (_ = 0°) the Doppler

frequency shift is maximum. The conical
position surface degenerates here to a straight line. For _ = 90*, Fn = 0.

Consequently, zero Doppler shift corresponds to a plane position surface

which is perpendicular to the velocity vector of the ship.
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Thus, afamilyof conicalpositionsurfacesis obtainedwhichmove
togetherwith theshipin space, Thelarger thefrequencyshift, thesmaller
theopeningof thecone. In extremecasestheconicalsurfacesdegenerate
intoa straightline andaplane.

As canbeseenfrom theformula, thevertexangle_of theconeis
determinedbytwoparameters:themeasuredvalueFa of the Doppler

frequency shift and the ship's velocity V. But V depends on the position

of the ship in space, which is still unknown. Consequently, position

surfaces which are circular conical surfaces cannot be used to determine

the position of a spaceship when the velocity is unknown. For this purpose

we can use only a plane, which corresponds to the unique case Fa = 0.

Fomax _ ,

t

J

/,

'1

x\ 6t

!

f'-O

FIGURE "_7. Position surfaces which are obtained when measuring the Doppler

frequency shift

Another feature of these position surfaces should be remembered. All

our previous considerations were based on the fact that the receiver is

stationary in inertial space. However, in reality this is not so. A receiver

which is situated on the earth has some linear velocity due to the diurnal

rotation of the earth. As was shown in the first chapter, this velocity (in

km]hr} is equal to 0.465 cos _. This velocity is directed along the parallel

to the east.

The Doppler frequency shift is due to the relative velocity of the trans-

mitter (with respect to the receiver). It is obvious that it will not be equal

to the absolute velocity of the spaceship, on which the transmitter is

mounted. The relative velocity is the difference between the velocity vector

of the ship and the linear velocity vector of the point on the earth where the

receiver is situated.

Thus, for a given location of the receiver, the position surfaces will be

symmetric with respect to an axis coinciding with the vector of the relative

velocity of the spaceship. In other words, the direction of the vector of the

relative velocity will be the axis of conical position surfaces, and the

extreme position surface, a plane, will be perpendicular to this vector.

For other locations of the receiver, the orientation of the position surface,

or plane, in space will differ corresponding to different orientations of the

relative velocity vector.
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When measuring the Doppler frequency shift of the signal received on

the spaceship, the vertices of the conical position surfaces will coincide

with the location of the radio station on the earth. In this case too, if the

velocity of the spaceship is unknown one may use only the plane to determine

the position.

M

FIGURE 78. Position surfaces of a spaceship as an el-

lipsoid and a hyperboloid of revolution

IN and D2- distances from the centers of the plaaets to

the ship at the I:_int M.

The velocities of spaceships are sufficiently high for the Doppler

frequency shift to reach several Mcps.

Determining position surfaces by measuring the phase difference of the

signals from a spaceship's transmitter as received by two ground stations

leads to hyperbolic position surfaces (hyperboloids of revolution). Their

axes coincide with the straight line connecting the ground stations. At the

mean distance between the receiving stations the hyperboloid degenerates

into a plane perpendicular to the base line.

If the measured parameter is, for example, the sum of the distances to

two celestial bodies, the position surface of the spaceship will be an ellip-

soid of revolution with an axis passing through the centers of the celestial

bodies Pl I and Pl 2. The difference between the distances to two celestial

bodies corresponds to a hyperboloid of two sheets whose rotation axis passes

through the centers of the celestial bodies (Figure 78).

._3. Principles for Solution of the Problems of Analysis

and Correction of the Spaceship's Trajectory

The solution of the problem of controlling the motion of a spaceship

requires determination of its position at a given time, as well as the

12]



determinationof its actualorbital elements.Theactualorbit ofa space-
shipcanbedeterminedeitherbytwosuccessivepositionsin space,or
from threedirectionsfrom theearthto theship, obtainedat differenttimes.

Thedirectionsto a spaceship,usuallygivenin somesphericalcoordin-
atesystem,areobtainedby theintersectionof twopositionsurfaces(two
planes,twoconicalsurfaces,aplaneanda conicalsurface).

For interplanetaryshipsfar from theearth, determinationof theactual
orbit is possibleonlyby determiningsuccessivepositionsof theship.

Let usconsidertheprincipleof thedeterminationof thepositionof a
shipin space.

In general,theanalyticrelationbetweenthemeasuredparametera,
the coordinates X. Y. Z of the center of the celestial body or a point of the

earth at which the measurement of the parameter _ is made, and the

coordinates x, y. z of the spaceship can be represented:

_--[(x, Y, z, x, y, z).

This equation contains three unknown coordinates; consequently, to

determine them it is necessary to measure any three parameters, or one

parameter from three different points on the earth. The resulting three

simultaneous equations will contain three unknowns, the coordinates of the

spaceship at the given moment. The geometrical interpretation of the

solution consists in finding the intersection points of three position surfaces of

the spaceship.

Z

\

FIGURE 79. Determination of the position of a spaceship at the

point M kom its height h (elevation angle), azimuth rt, and dis-
tance D

Let us assume that at some point Aon the earth (Figure 79) there is a

station which measures three parameters, the height above the horizon, or

the elevation angle, the azimuth of the spaceship, and its distance.
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Knowledge of these parameters makes it possible to determine the unique

position of the spaceship at the given moment. The height, or elevation

angle h, gives a conical surface whose vertex is at the ground station, and

whose axis is along the local vertical. The distance D results in a sphere

whose center is at the ground station. The intersection of these two

position surfaces gives a position line of the ship. In this case it is a circle,

lying at some height above the earth in a plane perpendicular to the local

vertical. The intersection of this line with the third position surface, a

plane, determined by the measured azimuth a, gives the point M at which

the spaceship is situated at the given moment.

In this example, all three position surfaces intersect at one point, and

the position of the spaceship is determined uniquely. In general, the

position surfaces intersect at two, and in some cases, at four points.

PI$

a b

FIGURE 80. Four possible intersection points (.,t4,, M_n M_. and M_) of three

position surfaces (one cyclide and two spheres, obtained from the distances Os and

D_ to the planets)

a- "side" view; b- view from "above".

Suppose that in order to determine the location of a spaceship three

parameters are measured, the angle between the centers of two planets

and the distances to two other planets (Figure 80). The intersection of the

cyclide with one of the spherical surfaces gives two position lines, and two

circles are obtained. Their intersection with the second sphere gives

four points: M,, M2, M3, and M4. It is obvious that only one of these points is

the actual position of the ship in space at the given moment, and the

remaining three points are false. Which one is real can be solved in two

ways. First of all, it is most likely that the real one is the point which is

nearest to the calculated orbit. Sometimes this method cannot answer the

question. In fact, the points M2 and _13 may lie close to one another, and

the calculated orbit may pass between them. In this case it is worthwhile

to measure a fourth parameter, resulting in another position surface which

must intersect the first three at the actual location of the spaceship.
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Thepreviousconsiderationswerebasedontheassumptionthatthe
parameterdeterminingthepositionsurfaceis measuredwithabsolute
accuracy. However,in reality, anyparameteris measuredwithsome
error. Letus nowconsiderthepossiblemeasurementerrors of some
of theprincipalparametersandtheir influenceonthesolutionof problems
of cosmicnavigation.

Severalmethodsof determiningpositionsurfacesdependonfindingthe
directionto a star. Equipmentfor doingthis automaticallyis already
available. Thereare for example,airplanenavigationalinstruments,
astrotrackers,whichworkbyfindingstar positions. Thereasonsfor
errors in directionfindingof stars are theaberrationof light,* proper
motionof thestars, andinstrumenterrors.

Aberrationaldisplacementof thedirectionof a star is due to the velocity

of the spaceship. For velocities of 10 to 20 km]sec it is small, for veloci-

ties of about 100km/sec it may reach approximately 1'. If direction finding

of the star is carried out, for example, in order to measure the angle

between the star and the center of some planet, the aberrational displace-

ment produces an error in this measurement. As a result of this, the

vertex angle of the position surface cone will differ from the correct value.

Aberrational errors also appear in finding the direction to planets and other
celestial bodies.

When measuring the angle between a star and the center of a planet, the

proper motion of stars, its motion with respect to other stars, gives rise

to a displacement of the axis of the conical position surface. The problem

is that the ship's computer has in storage stellar coordinates corresponding

to some particular time, which will not coincide with the moment of direction

measurement. The larger the difference in the times and the higher the

proper velocity of the star, the larger the difference will be between the

actual star coordinates and those used in the astrotracker. Consequently,

the axial displacement of the conical position surface from its true position

will also be larger.

It is true that the proper motions of the stars are small. For example,

the annual motion of Sirius is 6.6prad**; Arcturus, 11.4; Procyon, 1.6;

Altair, 3.3; Pollux, 3.1; Fomalhaut, 1.8; Regulus, 1.22. Other stars

have, as a rule, a lower proper velocity, but even these low velocities may

lead to quite large errors in the determination of the position surface. For

example, a spaceship is 10 millionkm from the earth, and to determine a

position surface, the angle is measured between the center of the earth and

the star Arcturus. Assume the ship's computer has in it stellar coordinates
which were calculated for a time which differs from the measurement date

by half a year. The error in the linear displacement S of the conical

position surface will be:

S _ haD,

where Aa is the variation of the position of the star during half a year in

radians, and D is the distance to the earth in kin.

* Abberatioa of light is the astronomical term for the deviation of the apparent position of a star on the
celestial sphere from its actual position. This deviation is due to the finite propagation velocity of light
and to the motion of the observer, For more details on this, see, for example / 7/.

** A microradian is equal to 10-s radians. (Oneradianis 57" 17' 44.8".)
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Substitutingthevaluesof ha and D, we obtain

S= 11.__4. 10,000,000=57 kin.
2 1,000fl00

This error by "cosmic scales'* is of course, small, but the distance of

the spaceship from the earth in the example was relatively small. For a
distance of 100 million km from the earth, the error will be 570 km, and if,

in addition, the stellar coordinates are wrong by 1 year, the error increases

to ll40km. Such an error apparently will be noticeable.

Both this and the previous error, caused by aberrational displacement,

are systematic, and therefore can theoretically be compensated for with

sufficient equipment.
An error in the determination of the position surface may also arise in

finding the direction of binary stars due to the unequal brightness of the two

stars. In this case, in measuring the angle between a planet and a star,

there may be errors in both the position of the cone's axis in space and the

vertex angle of the conical surface.
In a number of cases, the distance between the components of binary

stars are quite large. Thus, for example, the components of the binary

star in Ursa Major are situated about 12' apart.

Binary stars are not so numerous. Statistics show that of stars up to

the 9th stellar magnitude, about 5.5% are binary, but for the brighter stars

the percentage of binaries increases. At the present time, very detailed

catalogues exist. The simplest method for combatting this error is to

choose ordinary, nonbinary stars for generating position surfaces.

Another possible reason for errors in the determination of the spaceship's

position surface is the parallactic star displacement. [Parallax is the

apparent displacement of an object as seen from different points.] If, for

example, the angular coordinates of stars on the celestial sphere are

calculated under the assumption that the observer is at the center of the sun,

another observer far from the sun will not see the stars at "their usual

places," but they will appear slightly shifted. Parallactic displacement

results in a change in the orientation of the cone's axis and in the angle of

the cone when the angle between a star and the center of a planet are

measured.

Measurement errors in determining the angle between the centers of

planets may result from noncoincidence of the center of brightness with the

geometrical center of the planet, inaccurate knowledge of the distance

between the planets and the finite propagation velocity of light, as well as

errors in the instruments used.

The displacement of the brightness center depends on many factors, but

mainly on the phase of the planet. This may cause an error in the deter-

mination of the direction of the planet's center of several minutes of arc

and even tens of minutes in the case of short distances to the planet.

The absolute distances between celestial bodies are known to within

0.01%. If the distance between the planets is 20 million km, the possible
error in the determination of the distance between them is 2000 km. This

creates an error in the determination of the position surface.

Because of the finite propagation velocity of light, in the time it takes

light to reach the spaceship from the planet, the planet moves along its

orbit and its coordinates vary considerably. For example it takes a light
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ray 480secondsto travel 143million kmfrom Mars. In this time, Mars
movesalongits orbit morethan11,000km.

Inorder to eliminatethis error, it is necessaryto givethecomputer
thecoordinatesof theplanetcorrespondingto thetimeof theobservation.
It mustalsobegiventhetime it takesa light ray to traversethedistance
from theplanetto theship. However,it is notsosimpleto carry this out
in practice. Thedistanceto theplanetis unknown,sincetheexactposition
of theshipat this momentis unknown.As a matterof fact, themeasure-
mentis beingmadejust to determinethis position. In thefirst approxima-
tion, apparently,it is necessaryto usethepositionof theshipgivenbythe
previouslycalculatedorbit of its motion.

Measurementof theangulardiameterof acelestialbodyis possiblein
severalways. For example,it is possibleto usea movablecircular
screen(Figure81)whoseplaneis perpendicularto thedirectionof the
centerof thecelestialbody.

o
Screen

FIGURE 81. Measurement of the angular diameter _ of a planet

by means of a movable circular screen of radius •

A screen of diameter 2r moves perpendicularly to the axis OO, to a

position where the edges of the celestial body are barely visible. The

measurement process can be easily automated by means of photocells and
a servomechanism which controls the distance d and the direction of the

plane of the screen.

As can be seen from the figure, the angular diameter of the celestial

body is:

= 2 arctan mr
d

Measurement of the apparent angular diameter of the celestial body is

also possible by tracking the edge of its disk (Figure 82) by means of one

or several telescopes.

As was shown above, measurement of the apparent angular diameter of

the celestial body makes it possible to determine a spherical position sur-

face of the spaceship. The error of the determination of the position sur-

face by this method depends on the measurement error of the apparent

angular diameter _ and on the accuracy of the known diameter.

The diameters of the planets are known to within 0.01%. Errors in these

measurements are due to the influence of the planets' atmospheres, their

nonsphericity, nonuniform illumination of their surfaces, as well as

instrument errors in the measurement system.
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Measurement of distances to celestial bodies is possible by radiation

and radar methods. The radiation method is based on the relationship

between the amount of radiant energy falling on a heat-sensitive element

and the distance to the energy source.

According to calculations of V. P. Seleznev /29], the relative error of

measurement of the distance to the sun by this method is 0.01 to 0.1%. The

absolute error of the distance measurement is approximately equal to the

diameter of the earth in flights near Venus, Mars, or Jupiter and reaches

5 million km at a distance from the sun corresponding to the apogee of

Pluto (7 billion km).

0,

fiGURE 82. Measurement of the angular diameter _ of a celestial

body by following the edge of its disk by means of the telescopes
T 1 and Ts

A variation of the intensity of the radiation flux of a heavenly body may

lead to large errors in the measurement of its distance. This is a funda-

mental disadvantage of this method.

The radar method of distance measurement consists of sending a radio

signal to the celestial body and measuring the time interval between the

sending of the signal and the arrival of the reflected signal. This method

is widely used now in aviation. Radio-altimeters, mounted on all modern

airplanes, are used for measuring the distance to the surface of the earth

by radar.

An important disadvantage of this method is the need for a large source

of electric energy on the ship, since a very powerful signal has to be sent

to remote celestial bodies. It can therefore be assumed that radar will be

used only in the neighborhood of celestial bodies.

The errors in the measurement of the parameters and in the calculation

of the coordinates of celestial bodies cause the errors in the determination

of the position surfaces of a spaceship.

The error in the determination of the ship's position depends on the

errors of the determination of the position surfaces and on the angle of their

intersection. The closer this angle is to a right angle, the smaller the

error. Consequently, it is necessary to choose methods which make it

possible to determine the position surface with a higher accuracy, and, in

addition, methods and celestial bodies which provide the most favorable

intersection angles of the position surfaces.

Suppose at a given moment the ship is situated at the point M (Figure 83).

In order to determine its position, its azimuth a,height (elevation angle) h.

and distance D are measured from the point /<. All these parameters are

measured with some errors: ameas = a + Aa', hmea_ = h + A/t, /_meas = D + AD
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(where a, hand D are the actual parameters of the spaceship, at the given

moment, andha, Ah, and ADare the respective measurement errors).

Z_

'7/7_

M s

I
I
I

I .¥
I

/

•"D _¢c

FIGURE 83. Error of the position determination of a spaceship from the azimuth a,

height ( elevation angle) h, and distanceD, all measured from the point M

In this case the calculated position of the ship is at the point M'. The

error A/of the determination of its position is equal to the distance between

the points M and M':
= + +

I/'7_ao ,
=O l/ (-_- ) -t-(hh)' nt-(b.a) '.

As can be seen from the formula, the error in determining the position

of a spaceship depends both on the measurement errors and on the distance

to the ship; the larger the distance, the larger the error. For this reason,

the angle-distance method cannot be used successfully to determine the

position of an interplanetary ship at a large distance from the earth.

Even at comparatively small distances to the spaceship (1 million kin) and

small (1)) angular measurement errors of a and h, the error in determining the

position of a spaceship due to only these two primary errors will be about 420 km.

Consequently, during the main phases of the trajectory "on board" navigation

methods, methods in which the ship's position is determined from measure-

ments of some parameters directly from the spaceship, will be used.

In the above example, all the three position surfaces, plane, cone, and

sphere, intersect at right angles, and the error of the position determination

of the ship is minimal. However, the position surfaces may not intersect

at right angles as shown in Figure 83. Then, even if the measurement

accuracy of the parameters determining the position surfaces is high, a

large error is possible in the determination of the ship's position. In such cases

other parameters should be used to provide more favorable intersection angles

of the position surfaces. One of the important problems of space navigation

is choosing those methods of locating the orbit of the spaceship which, on a

given section of the trajectory, provide the highest accuracy.

Two successive positions of a spaceship make it possible to determine

its velocity vector. Suppose a ship is successively situated at the point ]H,
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at time Tj and at the point Ms at time T, (Figure 84). The absolute value of

the velocity vector is then

T2--T! rz--Tl

and its direction is tan 7 = vz ;
x_

COS_ '--_=__' z2

s V _-'+_ +z.'

In this way, the mean value of the velocity on a rectilinear section of the orbit

is determined. The method is therefore suitable only when the spaceship is

far from a gravitational center, which corresponds to a low-curvature orbit

with a nearly constant velocity. Note that for the same errors in determining

the ship's position, the errors in the calculation of the velocity vector

decrease with longer time intervals between the position measurements.

(5)

6

J FIGURE 84. Determination of a spaceship's mean velocity vector V

,X from two successive positions Mi and M2

A A" A'

A'"/,/./" . ./

/)Y'"
i/// M

/
/

/
FIGURE 85. Possible solutions of the problem of correcting

a spaceship's trajectory to arrive at the correct orbit, start-

ing from the point M of the actual trajectory
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Letustry toestimatetheaccuracythatthedistanceS between the two posi-

tions should be so that the calculated velocity would have a given accuracy.

Suppose it is necessary to determine the velocity of a spaceship with a

relative error notlarger than 1%. Let the distance between the successive

positions of the ship be 10,000 kin. We want to find the required measure-

ment accuracy of the distance AS. Since ,SV/V = AS/S. we have AS = S(AV/V) =

=10,000.0.01 -- 100kin.

Consequently, the error in the velocity determination will be not larger

than 1% if the distance is measured with an error up to 100 kin.

A velocity determination accuracy of 1% is not high compared with the

required accuracy of the position determination of the interplanetary ship.

To measure a distance of 10,000km with an error not larger than 100 km

is quite a difficult problem, and therefore this method of determination

the velocity of a spaceship is not highly accurate. We shall give below other

possible methods for more accurate measurement of the velocity of a spaceship.

The known positions of a spaceship, its coordinates at certain moments,

make it possible to calculate the elements of its orbit. For example, the

current rectangular position coordinates of a spaceship are functions of

the six elements of its orbit (i. _, t_, a, e. 7) and of the time t:

x==f,(t, i, _2, _, a, e, T);

y=_(t, i, _2, _, a, e, T);

z--f_(l, i, if2; ,0, a, e, T).

It is obvious that the stated problem, calculation of the oribtal elements

of a spaceship, can be solved if the coordinates of the ship are determined

by some method for two times: x_, y_, zt for time t_, and x2, Y2, z_ for time t2

Having a system of six equations with the known quantities x_, y,, zt, t_, x2,

Y2, z_, t2 and the six unknown orbital elements it is possible to determine
the orbital elements.

The velocity components of a spaceship along the axes of a chosen

coordinate system are also functions of its coordinates, the elements of

the orbit, and the time. Therefore, by determining the coordinates of a

spaceship at some moment and its velocity components (V,----_-,dx Vy-= flYat' and

Yz=-_-_ },it is possible to calculate all the elements of its orbit. Other

methods for determining the orbital elements of a spaceship are also possible.

An important problem in interplanetary navigation is the correction of

the actual orbit if the deviation from the preassigned orbit exceeds the

permissible value in the given conditions. For this purpose we will use

the coordinates of the spaceship obtained by solving the position problem.

In principle the following methods of correction of the actual orbit are

possible. Suppose at point M (Figure 85) the crew of a spaceship detected

a deviation from the prescribed trajectory. If the actual orbit will

later intersect the desired one, it may be decided to follow the former

orbit without any maneuvers until meeting the calculated orbit at

the point A'. They may also decide to carry out maneuvers in order to

arrive at one of the points of the calculated orbit on the section AA' for

example A". It is also possible to go to the nearest point of the planned

trajectory (the point A ) where transition to another orbit was envisaged.

Finally, it is possible to go directly to the calculated orbit (the point A"').

The choice of the method of arriving at the correct trajectory depends

on the particular conditions and the magnitude of the deviation. But regardless
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ofthemethod,anytransferorbitwill beeitherelliptical, parabolic,orhyper-
bolicwithrespecttothegivencelestialbody.Fromtheviewpointofminimum
fuelexpenditure,it is expedienttotransfertothedesiredorbit alongelliptical
paths.

A pointto berememberedin solvingtheproblemof orbit correctionis
thatat thepointwheretheshipreachesthedesiredtrajectory (points
A', A", A, A"'), an appropriate maneuver must be carried out in order to

continue the motion along the correct orbit.

Finally, we point to another important aspect. The importance of timing

in space flight and the necessity of keeping to the flight plan along the

predetermined trajectory have already been mentioned. Consequently, it

is necessary not only to transfer to the correct trajectory, but also to reach it

at the scheduled time. Consequently, in moving along transfer orbits to

the desired trajectory, the spaceship should follow a rigorously determined
schedule.

Between two points of space in the gravitational field of a celestial body

there exist, in general, an infinite number of elliptical orbits. However,

for a given velocity only one of them can be traversed in a given time.

Thus, the complete solution of the correction problem consists in finding

an orbit between the position of the spaceship at a given moment and the

chosen point of transfer to the correct trajectory along which the ship will

reach the planned point on the correct orbit at the correct time.

These are the basic principles of the solution of some problems of space

navigation, analysis and correction of motion trajectories.

§4. Navigation Systems and Spaceship Equipment

Let us now consider some of the most representative present and

possible future systems and equipment for determining the position of

spaceships.

For determining the position of artificial earth satellites, the Americans

use a phase-measuring system called "Minitrack." Its opera{ion is based

on measuring the phase difference of high-frequency signals from the

satellite's transmitter and received by antennas situated some distance

apart.

The equipment consists of the satellite's transmitter, a set of ground
receiving stations, and a "Vanguard" computational center with an IBM-704

computer, interconnected by a communication system.

Let us consider briefly the principles of its operation. At the points A,

and A2 (Figure 86) the antennas are mounted. The distance between them

corresponds to n wavelengths emitted by the satellite transmitter, or a

360°n phase angle. The distance to the satellite is considerably larger

than the distance between the antennas, and therefore it can be assumed that

the distances from the satellite to the points A_ and P are equal. At these

points the phases of the signal emitted by the satellite transmitter are

identical, while A, and A2 differ. The segment PA2is the difference between

the distances traversed by the signal from the satellite to the antennas.

Suppose it contains m wavelengths, or a 360°m phase angle of the signal.

Then the direction of the satellite, determined by the angle a, can be found
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from the relation

COS0t =

¢05 _t _ Device for comparing signal phases ]

FIGURE 86. Operational principle of the radio-electronic system based

on the measurement of the phase difference of signals from a spacecraft

=- the direction of the satellite.

Thus, by measuring the phase difference of the signal from the satellite

at the points A, and A2 the direction u of the satellite can easily be deter-

mined. However, for each measured phase difference m, there also

corresponds aseriesofotherpossible positions of the satellite. Rigorously

speaking, as we already mentioned, the measured phase difference gives

the position surface of the spacecraft in the form of a hyperboloid of revolu-

tion of two sheets, whose axis coincides with its base line. The position

surface is the same in this case. The assumption that the distance to the

satellite is considerably larger than the length of the base line makes it

possible to replace this complicated position surface by a simpler one, a

two-sheeted circular cone with an axis coinciding with the base line. The

generators of the cone coincide with the asymptotes of the hyperboloid, and

the opening of the cone is equal to 2cz

One position surface does not make it possible to determine either the

coordinates of the object, or even its direction. The "Minitrack" system

uses a second set of antennas to determine the direction of the satellite.

The base line of the first antenna system lies on a north-south line, and

the base line of the second system on an east-west line (Figure 87).

Structurally, the antenna system_ are multielement grids whose recep-

tion patterns cover an azimuth angle of up to 90 ° and a height (elevation

angle) of up to 12 °. Altogether the receiving station has eight grid antennas.

Four of them, with base lines of 150m, are arranged cross-wise in the

north-south and east-west directions. The other four form three pairs, two

of which serve to eliminate the ambiguity in the north-west direction, while

the third eliminates the ambiguity in the east-west direction.
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The radio signal has a phase repetition every 360 °, and an ambiguity in

the angle a therefore results if the difference in the distances from the

satellite to the points A, and A2 exceeds one wavelength. This uncertainty

is eliminated by an additional arrangement of antennas on each base line,

so that the shortest distance between two antennas does not give a phase

difference larger than 360 °.

HGURE 87. Positions of antennas A,, A,, A3 and A4of the "Minitrack"

system; a and 13are angles determining the direction of the satellite

Thus, the ambiguity in the measurement of the phase difference is

resolved and the system measures two parameters, the angles a and

with respect to the base lines. To each parameter corresponds a position

surface in the form of a two-sheeted circular cone with an opening of 2a

and 2_. The axes of the conical position surfaces coincide with the base

lines, and therefore also intersect at an angle of 90 °.

As a result of the intersection of the four cones, eight possible satellite

directions are obtained. Which of these is the true direction to the satellite?

It is obvious that four directions are at once excluded, since they lie below

the horizon. The reception pattern of the antenna systems, a rough esti-

mate of the position of the satellite, observation of its motion during some

time, and a number of other factors, make it possible to exclude the

remaining false directions and accurately determine the direction to the

satellite.

The "Minitrack" system permits a determination not of the position of

the satellite, nor of its spatial coordinates, but only of its direction at a

given moment. It is clear that the position of the satellite can be determined

by means of two such systems, simultaneously observing the satellite from

different points on earth.

The satellite's velocity components, which are determined from the

dependence of its angular position on the time, aid in calculating the elements

of the orbit. The components are obtained by tracking the satellite during

some period.
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To track satellites with orbit inclinations of 30 to 40 °, a network of nine

"Minitrack" stations was created. These are located approximately in the

meridional direction in the USA and South America. The stations are

connected to the computational center by a communication system. The

precalculated positions, the satellite ephemeris, obtained as a result of

the processing of the observations by a computer, are transmitted to various

observation points.

A new system, based on the "Minitrack" has been developed. The

"Azusa" system directly determines a spacecraft's position in space. It

includes a range finder based on the principle: inquiry (from the earth)--

answer (from the spacecraft). This third parameter, the range, gives a

position surface in the form of a sphere. The intersection point of the

direction, determined by the angles _ and _, with the sphere gives the

position of the spacecraft.

The range of the spacecraft is determined by superimposing on the signal

of the range finder's transmitter a series of modulating frequencies, which

are produced by the vehicle's transponder. The phase of the signal received

on the earth is compared with the phase of the transmitted signal, and

determines the range. Several modulating frequencies are used in order to

raise the accuracy of the range measurement. The lowest frequency is used

to determine distances in a wide range, and the higher frequencies provide

data within this interval.

Initially it was intended to use the "Azusa" system for guidingthe "Atlas"

ICBM. It is reported in the foreign press that with small modifications,

the equipment of the system will make it possible to determine the position

of rockets intended for lunar flight.

For tracking ballistic rockets and satellites one American firm proposed

a "Sortey" electro-optical system (Figure 88). A photomultiplier tube is

placed in the focal plane of the lens of a camera with a narrow slit in front

of it. By means of a rotating mirror (3), the image of a section of the sky

is scanned, alternately in the planes XOZ and YOZ. By means of a

synchronizing device, coupled to the rotating mirror and the output of the

photomultiplier, the increment of the angular displacement of the rotating

mirror is determined in order to obtain the exact angular distance between

two light sources, the spacecraft and some star. The exact angular position

of the star, its azimuth and elevation, is determined by means of an IBM-

7090 computer. Apparently such a system must, provide a tracking accuracy

of the order of 1 " for an angular rotation velocity of the mirror of 20 rpm.

The "Sortey" system, as considered by foreign specialists, permits the

accurate determination of the azimuth and elevation angles of a spacecraft.

The direction to the vehicle is the line of intersection of two position sur-

faces, a plane, corresponding to the azimuth, and a circular cone, corres-

ponding to the vehicle's elevation angle. The use of two systems, situated

at different points on the terrestrial surface, makes it possible, by simul-

taneous measurement, to determine correctly the position of a vehicle in

space.

As an example of a navigational system on board a spaceship, we considel

the block-diagram of an astrotracker. This is an automatic device for

determining the position of an interplanetary ship by means of three

celestial bodies, the sun and two planets. The instrument solves the

problem in a heliocentric coordinate system.*

* The tracker diagram istaken from /29/.
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FIGURE 88. Diagram of an electron-optical system for

tracking spacecraft

1- case of the main optical system; 2- stationary mirror

for scanning along the x axis; 8 o rotating mirror;

4- stationary mirror for scanning along the v axis.

Indicator

r_

l/ F
t

FIGURE 89. Block-diagram of an astrotracker for a spaceship, based on the

measurement of some parameters of three celestial bodies

R, and e2- computers; G- stable-frequency oscillator.
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The astrotracker contains photoelectric tracking systems, T,. T2,and T3

(Figure 89), which measure either the angular diameters of the celestial

bodies or the intensity of their radiation. The corresponding signals from

the photoelectric tracking systems proceed to computer B, for determining

the coordinates of the spaceship at a given time. The same computer is

fed withthe time-varying coordinates of the centers of the celestial bodies.

Computer B2 calculates the current coordinates of the centers of the

celestial bodies: the time is measured by the stable-frequency oscillator

G. The current heliocentric coordinates of the ship are obtained as a result

of the solution of the problem. They can be displayed by the indicator and

introduced into the flight control system in order to compare the actual with

the calculated orbits, and help correct the flight trajectory.

The three parameters measured by the astrotracker, the angular

diameters of the celestial bodies or their radiation intensities, result in

three spherical position surfaces. These generally intersect at two points.

Consequently, the solution of the problem by the astrotracker will give the

coordinates of two points, one of them, the position of the spaceship at the

given moment. Due to the large distances between the points, the incor-

rect one is easily eliminated by comparison with the calculated trajectory.

On the "Vostok" earth satellite, a navigational globe was used. With it,

the pilot could at any time determine his position with respect to the surface

of the earth. The globe was mounted in the pilot's cabin in the central part

of the instrument panel (Figure 90).
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FIGURE 90. Internal view of the cabin ot the pilot of a "Vostok" earth satellite

1- pilot's panel; 2- instrument panel with the navigational globe; 3- television
camera; 4- window with an optical driftmeter; 5- orientation control handle of

the ship; 6- radio reciever; 7- food container.

The design of such an instrument for satellite navigation can be based

on simulation of the satellite's motion with respect to the earth, including

the daily rotation about its axis. Let us examine a possible scheme for the

solution of this problem (Figure 91).
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A geographical globe G is rotated by means of motors M. and M 2 with

respect to two axes, the axis of the earth's daily rotation NS and an axis

CC, perpendicular to the orbital plane of the satellite. With respect to the

NS axis the globe rotates from west to east with an angular velocity equal

to one revolution per stellar day (23 hrs 56 min 04 sec of mean solar time).

The motion of the satellite along the orbit with respect to the surface of

the earth is shown by an arrow. To replace this motion by a rotation of

the globe with respect to the CC axis, the rotation should take place in a

direction opposite to the orbital motion of the satellite. The angular

velocity of this rotation should apparently be given by the relation:

360_

P

where P is the period of revolution of a satellite around the earth.
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FIGURE91. Po_ible kinematic diagram of a navigational globe for

determining the position of a satellite with respect to the surface of
the earth

G- globeM 1 and Ms - motOrS; NS- axis of the earth's rotation;
cc- axis perpendicular to the orbital plane of the ship; aa"- arcs

for setting the orbit inclination.

The rotation axis CC of the globe is perpendicular to the orbital plane

of the satellite, and therefore, as can be seen from the figure, the angle

between the NS and CC axes should be equal to the inclination i of the orbit.

We now place in front of the globe a glass scale with a reticule in the form

of crossed lines over the center of the globe. Thus, the cross will indicate

the position of the satellite with respect to the surface of the earth at any

time.

Before use, the globe should be placed in its initial position, the cross

should be placed over the entrance point of the satellite into the orbit, and
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thedeviceshouldbeswitchedonat themomentit passesthis point.When
the satellite is launchedinto anorbit withanotherinclination,it is
necessaryto changethelengthof thearc aa" accordingly.

A constant angular rotation velocity of the globe about the CC axis

corresponds, rigorously speaking, only to a circular orbit of a satellite.

When moving an elliptical orbit, the angular velocity of the satellite with

respect to the center of the earth is not constant, hence, errors appear in

the determination of the position of the spaceship. These errors are

periodic, and their maximum value is proportional to the eccentricity of

the orbit. Orbits of manned earth satellites lie in a comparatively narrow

range of heights, between 140 to 160 km and 300 to 500 km, and therefore

the eccentricities of their orbits are small.* The resulting errors in the

ship's position calculated by this instrument due to the constant rotational

velocity of the globe with respect to the CC axis will be small.

In principle it is possible to allow for this error. For this, the angular

rotationalvelocity of motor M2 should, at each moment, equal the angular

rotational velocity of the satellite with respect to the center of the earth.

This problem can be solved by means of a programmed device which

controls the operation of motor M2

A second possible error in determining the position of a satellite is

nonallowance for the precession of its orbit; but this error too can, in

principle, be compensated for. We previously said that the orbit precession

is manifested in a slow rotation of the plane of the orbit with respect to the

axis of the earth in a direction opposite to its daily rotation. Consequently,

to take into account the orbit precession, the globe should rotate with

respect to the NS axis with a velocity equal to the sum of the angular rota-

tional velocity of the earth and the mean precessional angular velocity.

Allowance for the precession is particularly necessary for multi-revolution

satellites, since the error in the determination of the ship due to non-

allowance for the precession accumulates during revolution.

The globe is a completely independent instrument, its operation does

not depend on any devices on the ground or aboard ship. Therefore, it can

also be used in ground command points for finding the position of the

satellite with respect to the surface of the earth at any moment. The

instrument can also be used in flight preparation to study the ship's trajec-
tory with respect to the earth, to choose the orbital inclination and entrance

point into the orbit in accordance with the purposes of the flight and, finally,

to plot the ship's trajectory on a map. For these purposes, however, it

is more expedient not to adhere to the real time scale and rotate the globe

with respect to both axes with a higher angular velocity.

We note in conclusion the possibility of correcting the readings of the

navigational globe from data of other, more accurate systems of determin-

ing the position of the satellite. The correction should be carried out by

rotating the globe so that the point under the cross will be that point of the

terrestrial surface which corresponds to the ship's position according to

the data of the more accurate systems.

* The perigee height of the orbit of "Vostok I" was 181 km, the apogee heightswas 327 km, which corresponds

to an orbit eccentricity of approximately 0.01.
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._5. Inertial and Astroinertial Navigation Systems for

Spaceships

An on-board inertial navigation system can be used to determine the

position of a ship in space and, what is particularly important, its velocity.

In general lines, the operation of inertial systems is based on measuring

the accelerations which the spaceship experiences and subsequently,

integrating them with respect to time. As is known, the first integration

of the measured acceleration gives the velocity of the spaceship, and the

second integration gives the path traversed from some initial point, which

determines the position of the ship in space. The accelerations are

measured by means of accelerometers oriented in a known direction.

The main advantages of inertial systems are their complete independence

from off-ship equipment, and the ability to determine directly the position

and velocity of the spaceship.

In this section we consider the fundamentals in creating inertial naviga-

tion systems of spaceships and the future growth of such systems. Headers

wishing to study this problem in more detail are referred to the book

"Navigational Devices" by V. P. Seleznev ]29].

One of the basic elements of inertial systems is the accelerometer. The

sensitive element of any accelerometer is some inertial mass m connected

to the accelerometer case. Its operation is based on measuring the dis-

placements of this inertial mass with respect to the case, or the force

acting on it. These parameters are proportional to the acceleration of the

spaceship.

Accelerometers can be divided into linear and pendulous accelerometers,

depending on the connection between the inertial mass and the case. In the

linear accelerometers, the inertial mass moves along a straight line, the

sensitive axis of the accelerometer (Figure 92a). The forces, which act

on the inertial system due to accelerations of the spaceship along the

sensitive axis, are measured by a spring. In pendulous accelerometers

(Figure 92b) the accelerations are measured by the angle of deflection of

the pendulum from its unperturbed position, in which it is held by a spring.

T
,zA Sprin, I

a b

FIGURE 92. Fundamental diagram of a linear (a) and pendulous (b)
accelerometer
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Letus examinetheoperationof thesimplestlinear accelerometer.One
endof theaccelerometerspringis attachedto thebodyof theship, the
otherendto the sensitiveelement(Figure92a). Supposethatnoforcesact
ontheshipandit movesuniformlyandrectilinearly in space(Figure93a).
Thesensitiveelementof theaccelerometermovestogetherwith thespace-
shipwith thesamevelocity V0. There are no forces stretching the spring,

so the signal from the output of the aceelerometer is zero.

I

. 1

c

FIGURE 93. Diagram of the operation of an acceler-
ometer on a spaceship

a- in the case of uniform motion; b- in the case of
accelerated motion due to the thrust p: c- in the

case of accelerated motion due to gravitational force
%.

Let us now assume that some force F, for example, the thrust of the

rocket engine, is applied to the ship (Figure 93b). The ship then acquires

an acceleration as:
Y

G$_--,

rn s

where ms is the mass of the ship.

The acceleration causes an increase in the ship's velocity. However,
the sensitive element of the accelerometer tends to maintain its uniform

motion with the velocity II0 and therefore the distance between it and the

point of attachment of the spring to the body of the ship increases. As a

result a deformation of the spring appears:

?tl

X _--_- aS ,

where k is the stiffness of the spring.
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As can be seen from the formula, the deformation of the spring, being

the output signal of the accelerometer, is proportional to the acceleration

of the spaceship.

Let us now assume that the ship moves only under a gravitational force

(Figure 93c). In this case a force F_=m_g acts on the spaceship, and a

force F'_=mg'acts on the sensitive element of the accelerometer. The

accelerations of the ship and of the sensitive element will be different, since

their masses are different; but this difference is so small that it can be

disregarded. Consequently, both the ship and the sensitive element will

have the same acceleration, that of a freely-falling body. For this reason

there is no displacement of the sensitive element of the accelerometer with

respect to the ship, the accelerometer's spring is not stretched, and the

accelerometer reads zero.

Thus, in spite of the accelerated motion of a spaceship in a gravitational

field, an accelerometer based on the measurement of inertial forces does

not detect this acceleration. This creates some difficulties in the develop-

ment of inertial systems for spaceships, but by no means excludes their

use for space navigation.

To overcome this difficulty, a signal proportional to the acceleration

due to gravitational forces is produced by a special computer. It is fed,

together with the output signal of the accelerometer, into the integrators of

the inertial system. Thus, the accelerometer records the accelerations

which are due to the thrust of the spaceship's engines and to the drag of the

atmosphere, and the computer calculates the accelerations due to gravita-

tional forces. Such systems are sometimes called gravity-compensated

inertial navigation systems.

In gravity-compensated inertial navigation systems, the velocity compo-

nents and the distances traversed are computed alongthe three axes of some

coordinate system fixed in inertial space. These may be ecliptic, helio-

centric, equatorial, ship-centered, and so on. The sensitive axes of the

accelerometers should coincide with the directions of the axes of the chosen

coordinate system.

T_e chosen accelerometer orientation can be maintained either gyro-

scopically, astronomically, or by inertia-pendulum stabilizers. A coordi-

nate system connected to the spaceship does not require the use of an

attitude maintenance system.

It is possible to compensate for gravitational accelerations by placing

the accelerometers in a plane perpendicular to the gravitational force (in

a horizontal plane). Such inertial systems are called locally level. They

are mainly intended for terrestrial aircraft and ships.

The basic elements of inertial navigation systems are:

accelerometers for measuring the accelerations of the spaceship;

a stabilizing system which maintains the accelerometers in a definite

orientation with respect to the chosen coordinate system;

a computing device for integrating the accelerations (for determining the

velocity, the current coordinates of the ship, the compensating signals_

and, in a number of cases, some other parameters);

displays of the output parameters (velocity, coordinates);

a data input for the initial quantities and data (initial coordinates of the

ship in the chosen coordinate system);

control devices, power supplies, and some structural elements.
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Let us consider some of the possible types of inertial systems for solving

the navigational problems of spaceships.

Inertial navigation system with autocompensation for

gravitational acceleration. The principle of autocompensation

consists of using the results of the determination of the spaceship's coordi-

nates, obtained by the inertial system itself, for calculating the signals

which compensate for gravitational acceleration ]29]. The system operates
as follows.

A gyroscopic stabilizing system (Figure 94) maintains the platform with

the accelerometers Ax, A_, A, in the XOY plane of a rectangular equatorial

coordinate system whose origin is at.the center of the earth. The sensitive
axes of the accelerometers coincide with the directions of the axes of the

coordinate system chosen. The signals from the output of the accelero-

meters together with the respective compensating signals proceed to the

input of the first integrators I Lx, I _, I,z. Integration with respect to time

yields the velocity components of the spaceship along the axes of the chosen

coordinate system. For a zero initial velocity of the spaceship:

t

Y._ _ f a_ dr;
o

t

v_ = f a, dr;
o

t

v,= f a, dt.
0

Integrating the obtained velocity components with respect to time in the

second integrators (I2_, I2v, Ia,) gives the current coordinates of the space-

ship: t

x-_x o-_- f Vxdt;
0

t

Y-_Yo -_- f Vydt;
0

t

z=zo+ f vzdt,
0

where x0, Y0, z0 are the geocentric coordinates of the launch point.

The current coordinates of the spaceship are introduced into the computer

for calculating the signals which compensate for the gravitational accelera-

tion. The velocity components are sent to another channel of the computer

for calculating the spaceship's current velocity:

v = + + v:

It is also possible to determine the direction of the velocity vector.

(The corresponding formulas are left to the reader.) The data character-

izing the current values of the velocity and of the coordinates of the space-

ship are indicated by the displays and are sent to the automatic flight control

system for subsequent solution of the trajectory correction problem.

Let us examine the compensating signals in the case of flight in the space

near the earth. In this case, it is necessary to take into account only the
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gravitational field of the earth. The perturbing accelerations due to other

celestial bodies can be neglected.

o

Computer

m, '-" _ v.*r'°m-uta"°n

o, ,---. channel of the
ul P- com-ensatln=

Y " e

I _ system

Computation chart-
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compoDents

-_ ; ; 1
" t t t

,, l, I ,lp, I
I Display of the

I velocityI
J
I
I

l

Display of the position

,
I z
J

t

Compensating signals

Y

A,

- .__._Jzing system

Gimbal system

FIGURE 94. Operation of an inertial system with autocompensation for gravitational acceleration

The acceleration components of a spaceship due to the attraction force

of the earth F are:

Fx,y,z

rn

where F=,v,, are the respective components of the force of attraction on the

ship by the earth's gravitational field, and in is the mass of the ship.

But since

F
Fx, y,z=

COS aX, y, g

x z

COS_x_--; COSay_ y "-- , C08 _tz _ -- ,
r r r

where r is the distance from the center of the earth to the ship, we have

F._--- Fx . Fy=- F-L ; F,---- Fz
¥ r r

Substituting F = _ where M is the mass of the earth, we obtain

[Mx fMt/ . fMz
gx= r"-_-; EY= r_' gz: r_

Thus, the compensating signals should be proportional to the magnitudes

of the g., g,. g,, and the gravitational constant and the mass of the earth must

be in the memory of the computer. The values of the current coordinates
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x, y,z of the ship are continuously and automatically updated, and the value

of r is calculated by the computer. Obviously,

r = V_x _ + y_ + z j

For interplanetary ships, it is more convenient to use a rectangular

heliocentric coordinate system with the XY plane coinciding with the ecliptic.

This coordinate system was described in the first chapter. In this case, it

is necessary to take into account the gravitational force not of a single

celestial body, as in the previous case, but of several celestial bodies (the

sun and planets), and the structure of the compensating signals will be as

follows:
n

g_= f _. Mt -x- xt
l-I r_

gy=f _. Mi Y-- Y_
l-1 r3

n

gz=f T'M Z-Z_

where M_ are the masses of the celestial bodies; X, Yi, Z_ arethe heliocentric

coordinates of the celestial bodies (for planets they vary in time due to the

motion with repsect to the sun); r_ is the distance from the i th celestial

body to the spaceship: r,---- V _- XiP + (y-- y,)2+ (&_Z,)9.

The system's errors, in general, are determined by the inaccuracy of

the initial coordinates, the calculation error of the compensating signals,

drifting of the gyroscopes, and instrument errors of all the units of the

system. Investigations show that errors in the formation of the compensa-

ting signals are the reason for the system's instability. In other words,
the errors in the determination of the coordinates do not damp out, but

increase during the operation of the system ]29]. This can be seen from

the graphs of the variation of the ratio of the current error hy to the initial

error Ay0 as a function of the altitude above the earth and the flight time,

calculated for a ship moving in the direction of the Y axis (Figure 95). In

this case the system is stable with respect to the remaining two channels

X and Z. However, when moving along an arbitrary trajectory, the

system is unstable in all three channels. The decrease in the growth rate

of the error with increasing height is due to the decrease in the effect of the

gravitational force with increasing flight height.

The instability of such a system is its fundamental shortcoming, but it

cannot be concluded that inertial systems cannot be used for space naviga-

tion. First, the errors grow relatively slowly and second, the system can

be made stable by giving it some external navigational information. Inertial

systems can be used not only for space navigation purposes, but also for

simulating a spacecraft's trajectory in the gravitational field of any number

of celestial bodies. In fact, knowing the orbital parameters of these celes-

tial bodies and given the initial conditions (point of entrance into orbit, and

the spacecraft's velocity vector at this point), it is possible to obtain from

the computer of such a system the time-variation of the coordinates of the

vehicle, i.e., a simulation of its trajectory. In this case, it is also possible

to obtain the trajectory taking into account the thrust of the vehicle's
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engines. For this purpose, at the appropriate moments, analytically

calculated data corresponding to the accelerations due to the thrust of the

engines should be introduced into the computer.

//

/Aj

0 4 8 12 16 2,8 t.103sec

FIGURE 96. Relative error of the y coordinate of a

spaceship versus flight time for various altitudes in the

case of a ship moving in the direction of the Y axis

Thus, such a system can be used as a simulator for the solution of

particular n-body problems and for the selection of optimum flight trajec-

tories of interplanetary ships and spacecraft."

Inertial navigation system without a stabilization

s y s t e m. We said before that a necessary element of every inertial navi-

gation system is a stabilization system for orienting the accelerometers

with respect to the axes of the coordinate system, or, in other words, for

representing on the spaceship the axes of the chosen coordinate system.

However, it is possible to build an inertial system without such stabilization.

The direction of the axes of the chosen coordinate system can be

calculated analytically from the output of six accelerometers, rigidly

mounted on the body of the ship. There are two orientations of the sensitive

axes of the accelerometers with respect to the coordinate system, which is

fixed to the ship. In the first type (Figure 96a) the sensitive axes of the

accelerometers are in pairs, perpendicular to the respective coordinate

axes. In the second type (Figure 96b) they coincide with the respective

axes.

If, due to some external or internal forces, the ship begins rotating,

for example, about the Z axis, with some angular acceleration, the

sensitive elements of the accelerometers A,, and Ay, (Figure 96a) shift in

opposite directions parallel to the X axis. Signals of the same sign appear

at the output of the accelerometers, since the springs of both accelero-

meters are extended or compressed. On the outputs of these aceelero-.

meters a signal appears when the ship accelerates along the X axis, but

the signs of the signals will be, as can be easily seen, opposite. Conse-

quently, by comparing the signs of the output signals of the corresponding

* Thisproposal was for the first time made by V. A. Bodner and V. P. Seleznev /8/.
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accelerometers,it is possibleto distinguishangularfrom linear
acceleration.

A_I AZ,

a

- X

Ax 2

'1

0 R_,

X

FIGURE 96. Arrangement of a six-accelero_eter strapdown inertial system

a- perpendicularly; b- parallel to the coordinate axes.

Accelerometers placed along the coordinate axes (Figure 96b) measure

the angular velocities of the spaceship. Linear acceleration, for example

along the Y axis, causes signals of different signs of accelerometers Ay,

and Ay,, and an angular velocity about the Z axis causes signals with the

same sign at these accelerometers. Thus, comparing the signs of the

accelerometers' outputs makes it possible to determine whether the outputs

result from a rotation of the spaceship about its center of mass, or from

linear acceleration.

Double integration with respect to time of angular accelerations, as well

as integration of angular velocities, determines the angular coordinatcs or

the rotation angles of the coordinate system of the spaceship with respect

to the fixed coordinate system, in which the navigational problems are to

be solved.

The linear acceleration measured by the accelerometers can be projected

on the X0, Y0, Z0, axes of an inertial coordinate system, and then integrated

as in the previous system to obtain the ship's velocity components and

position in the chosen inertial coordinate system. A direct integration of

the signals of the accelerometers with subsequent projection of the results

on the axes of the inertial coordinate system is also possible.

As in the stabilized navigator, the obtained coordinates are used for

calculating the compensating signals for gravitational accelerations. These

signals in the first case are introduced directly into the integrator, and in

the second case, are first projected on the axes of the ship's coordinate

system.

Errors in the determination of the velocity and position of a spaceship

by a strapdown inertial navigation system may be due to errors of the initial

orientation of the ship's coordinate system with respect to the fixed inertial

system, measurement errors of the aecelerometers, errors in calculating

the compensating signals, and errors of the integrators. The larger the
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distance between the accelerometers, the higher the sensitivity of the

system to angular motions, but in this case errors may appear in the

measurement of the accelerations, including violation of the parallelism

of the sensitive axes as a result of deformations of the ship's body. Even

small deformations under large distances between the accelerometers may
lead to very large errors in the measurement of the accelerations.

The strapdown inertial navigation system with autocompensation for

gravitational acceleration is also unstable, i.e., the errors of the coordi-

nate calculation increase with time. It can be used as a "memory" device,

in conjunction with the rest of the ship's navigational equipment, to deter-
mine its position.

Inertial navigation systems on spaceships make it possible to measure

the velocity very accurately, but considerable errors accumulate with time

in the determination of the position. Astronomical systems, based on

measuring parameters of heavenly bodies, can determine the position of a

spaceship very accurately, but the velocity, calculated from the distance

between two positions of the ship, results in large errors. The combination

of these systems into a single complex navigation system, called an

augmented inertial system, as is shown by investigations /29/, not only

makes it possible to compensate for the individual disadvantages, but also

increases the accuracy of the navigation.

As an example of an augmented system, we consider the astroinertial

system, an inertial system to which external information, in the form of

elevation angles of celestial bodies, is sent.

Astroinertial system. The system consists of a gyroscopic

platform with three accelerometers whose sensitive axes are along the

axes of the chosen coordinate system, an astrotracker for tracking three

celestial bodies, integrators for calculating the velocity and coordinates,

and three computers (Figure 97).

S s 782
%

Actual angular \ i / "_ $J

coordinates of Calculated angular coordin -_ j

the telescopes ares of the telescopes \_ i_ _,,_ f"

_To_he _tem _

[

Error signals _-_, 4y, _Z

FIGURE 9'7. An astroinertial navigation system

C,, C2, and C s- computers; rt, r_, and re - telescopes.
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Thecoordinatesof thespaceshipgofrom theintegratorsto computer
Cl for calculating the gravitational compensation, and to computer C2 for

obtaining the angular coordinates in order to aim telescopes T,, 72, and T3.

Due to inevitable errors in the calculation of the ship's coordinates, the

calculated and actual angular coordinates will not be equal. The difference

of the angular coordinates is measured by the telescopes, and fed to the

computer Cs, which calculates corrections hx, ay, az to the ship's coordinate_

obtained by integration of the measured accelerations. These corrections

are fed back to the acceleration integrators.

Investigations /29/ show that by proper choice of the transfer functions

of the loops, it is possible to render the system's position error not only

stable with any oscillation frequency of the input errors, but also attenuating.

That is, the errors in the initial value of the coordinates of the spaceship

will decrease with time. However, on the whole, the system's errors in

determining the ship's coordinates cannot be smaller than the errors intro-

duced by the astrotracker, and therefore, in building astroinertial systems,

one should strive at building as accurate an astrotracker as possible.

The astroinertial navigation system can work in three modes: the normal

operation mode, in which the oscillation period of the determination errors

of the ship's coordinates is close to the revolution period of the ship about

the celestial body with respect to which the flight is made; a mode of forced

elimination of the determination errors of the coordinates at a given time,

and, finally, a "memory" mode, when for some reason direction finding of

the celestial bodies is impossible, and the system operates as a pure iner-

tial navigator.

The combination of an inertial system with correctors, sources of

external information, makes it possible to build a navigation system

which can determine with high accuracy both the velocity and position of an

interplanetary ship.

Integrated navigation systems for spaceships. Recently,

reports have appeared in the foreign press /38/ about the development of

a new type of complex for airplane navigation. It includes various naviga-

tional information units: an inertial system, airborne radar, radio-elec-

tronic means for determining the position of the airplane, astrotrackers,

and systems and means for measuring the flight parameters, altitude,

velocity, course, and so on.

Such systems differ from the ordinary airplane navigation systems. For

example, units, which in given conditions provide the highest accuracy for

some navigation problem, are connected automatically. All the aggregate

parts of the system are checked periodically and defective equipment is

automatically disconnected and reserve equipment is turned on. The out-

puts of the units are processed together and sent to the displays. The basis

of such systems is the integrated control unit, and hence such systems are

called integrated.

Excellent reports of such systems are given in the foreign press. Thus,

the American AN/ASN-24 integrated airplane navigation system with a

computer using semiconductor instruments (weight of the computer with

the integrated control unit 14.5 kg) can solve a series of navigational prob-

lems, including the determination of the airplane's current geographical

coordinates with an error of only 0.07% of the distance traversed ]29].
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Some scientists believe it is possible to create integrated systems for

the solution of the principal and by-problems of the navigation and flight

control of spaceships. In a prolonged spaceflight, failure of individual

elements of the navigational equipment is quite likely. This demands periodic

checking. The requirement of high flight accuracy along a prescribed

trajectory in a prolonged flight and a number of other important problems

indicates the experience of using such systems on spaceships.

$6. Some By-problems of Space Navigation

By-problems of space navigation is the term we will apply to auxiliary

problems, solved along with the basic problems of navigation considered

above. Of these problems the most important are the maintenance or

stabilization of the ship in a definite prescribed orientation in space, and

the measurement of time in a spaceflight.

The solution of the stabilization problem is primarily necessary for

target-directed maneuvers, connected with the modification of the flight

trajectory such as descent, transfer to a new orbit, modification of some

elements of the flight orbit, and so on. To be able to perform these, as

we already know, the spaceship has to be given a definite position in space

with respect to some coordinate system.

ship

• y

-x rship

FIGURE98. Orientation of a ship in space with respect
to some XYZ coordinate system

Stabilization of a spaceship is also necessary for other reasons. For

example, navigational measurements, communication with the earth,

scientific observations, use of solar energy for recharging of electroenergy

sources on board, and a series of other circumstances also require the

stabilization of the ship in space.

The stabilization of a spaceship is performed with respect to some

coordinate system, and therefore to solve the stabilization problem it is
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first necessaryto simulatein somewaythis coordinatesystemontheship.
A givenpositionof a shipin spaceis determinedbythreeangularcoordinates
(Figure 98),andtherefore, somethreedirections,whichin thefollowing
wewill call stabilizationaxes,shouldin generalbesimulatedontheship.
Withrespectto theseaxesthespaceshipshouldbestabilized.

Wenotethatfor thesolutionof certainproblemsit is sufficientto
stabilizetheshipwith respectto oneaxisonly(for example,theZ axis
of anearthsatellite is madeto coincidewith the localvertical, andtheX

and Y axes in the horizontal plane are not stabilized}. When an earth

satellite or an interplanetary ship, returning to the earth, descends, the

X axis should be made to coincide with the orbital velocity vector (in an

opposite direction}.

Without discussing those devices, by means of which a ship can be

stabilized in space, we consider possible principles of simulating the
stabilization axes. *

One of the stabilization axes for low-orbit spaceships may be the local

vertical. On a ship it can be simulated by various methods, for example,

by an inertial system, which navigates in a horizontal

coordinate system. In this case the stabilized plat-
form is placed in the horizontal plane, i.e., perpen-

.__:_lc dicular to the local vertical.

Simulation of the local vertical is also possible

by tracking the visible edges of the earth by means

al of three or more photoelectric systems, working

either in the visible, or infrared part of the spectrum

'/ I '\ (Figure 99). In this method, for example, a three-

beam photoelectric system mounted on the spaceship

tracks the visible edges of the earth's disk. The

directions of the telescope's optical axes form a

trihedral pyramid whose axis coincides with the center

of the earth. Thus, the axis of the pyramid is the

local vertical at the position of the ship.

Such a scheme presents a series of difficulties;

one of these is the difficulty in tracking that part of

FIGURE 99. Simulationof the earth's disk which is not illuminated by the sun

thelocalverticalby track- (the night side). Other errors of this method are due

ing the edges ofthevisible to the nonsphericity of the earth, the unevenness of

diskoftheearth(planet) its surface, and the presence of clouds, smoke, etc.

When a ship flies above the earth at a height of

500km, individual sections of the terrain have heights of up to lOkm, and

the error in the simulation of the vertical is less than I°. On the average,

the assumed simulation accuracy may amount to a fraction of a degree.

Simulation of the local vertical is also possible by using the screening

properties of the terrestrial globe to the isotropie component of cosmic

rays.** For this purpose a system of three or four cosmic ray counters,

directed to the edge of the visible disk of the earth, are mounted on the

ship. If for some reason in the system of four counters, one is pointing

* Problems of the stabilization dynamics of a ship in space and the principles of the stabilization equipment

are described in the book ofK. B.Alekseev and G.G. Bebe nin /3/.

* * The isotropic component of cosmic rays consists mainly of neutrons, which are not deflected by the earth' s

magnetic field.
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abovethehorizon, thendueto thescreeningpropertyof theearth, the
numberof particlesrecordedbyits oppositecountersharplydecreases,
andthenumberof particlesrecordedbythefirst counterincreases.
Trackingof thevisibleedgesof theearth'sdiskcanbeautomatic.

It is assumedthattheaccuracyof thevertical simulationby this method
is low, about10°.

The stabilization axis for low-orbit and interplanetary ships returning

to the earth may also be the projection of the ship's velocity vector on the

horizontal plane. Simulation of this stabilization axis can be most easily

done by means of an optical driftmeter, an instrument for observing the

relative motion of the earth, due to the motion of the ship. The direction
of the stabilization axis coincides with the direction of the motion of the

earth. A similar method and corresponding instruments, for example, the

AB-52 sights, are used in aircraft navigation for the determination of the

vector of the path velocity from the drift angle and its magnitude. On the

Soviet "Vostok" spaceships, an optical driftmeter was used (see Figure 90).

In principle, the directions of celestial bodies (sun, moon, planets, and

stars) found by appropriate photoelectric tracking devices, can be used as

axes of stabilization. Thus, for the descent of a "Vostok" earth satellite,

the ship was automatically oriented with respect to the sun /2].

FIGURE 100. Orientation of an automatic interplanetary ship on the sun and moon

1, 2 ..... 6- different positions of the AIS on the orbit (3, 4- orientation of the

AIS on the sun); 5- orientation of the AIS on the moon.

The third Soviet lunar rocket, launched on 4 October, 1959, for photo-

graphing the invisible part of the lunar surface, was oriented with respect

to the sun and the moon (Figure 100). The orientation system turned and

stabilized the automatic interplanetary station in the required position first
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with respectto thesun(positions3and4)andthen, for directphotography,
in thedirectionof themoon(position5).

Errors in this typeof stabilizationinclude: inaccurateknowledgeof
thecoordinatesof thecelestial bodieswith respectto whichthe shipis
stabilized,instrumenterrors in thephotoelectrictrackingsystems,and
deviationof thebrightnesscenterof thecelestialbodyfrom its geometrical
center. Thelast reasonmayleadto considerableerrors whenorientation
is bycelestialbodieswhoseilluminationpassesthroughdifferentphases,
suchasthemoon,Venus,andMercury. Theerrors will belargewhen

2 !

FIGURE 101. Orientation of a dumbbell

sensitive along the local vertical

1, 2, 3- positions of the dumbbell on the orbit.

flying near these celestial bodies. For

example, when flying near the earth,
the orientation on the first or last

quarter moon will be in error up to 8',

and at closer distances to the moon

the error may reach degrees and even

tens of degrees.

The local vertical when flying inside

the sphere of action of any celestial

body can be determined by means of a

very simple sensitive element which
looks like a dumbbell. The rod

connecting the massive spherical masses

at the ends of the dumbbell will always

reach an equilibrium position directed

towards the center of the celestial body

(Figure 101). This is due to the fact

that, when the axis of the dumbbell

deviates even slightly from alignment

with the vertical to the center of the celestial body, the spherical end closer

to the celestial body, experiencing a greater gravitational attraction than

the other, will give rise to a moment tending to restore equilibrium.

Incidentally, for this reason the moon always turns the same side to the

earth; it is not completely spherical and in this respect resembles a

dumbbell.

Such a dumbbell continuously oscillates about the equilibrium position.

Reaching the equilibrium position, the dumbbell passes it and continues in

the opposite direction, then again returns to it, passing to the other side,
and so on. This is how a dumbbell sensitive element will behave in the

absence of friction.

When flying along a circular orbit, the oscillation period of a dumbbell
sensitive element is:

T-- P

where P is the revolution period of the spaceship around the celestial body.

For an artificial earth satellite on a circular orbit with a revolution

period of P = 90 min, the oscillation period will be slightly more than
52 rain.

It is possible to attenuate the oscillations of the dumbbell. As a damping

device it is possible to use, for example, a piston coupled to the dumbbell

and moving in a vessel filled with liquid, or a magnetic field. Other simple

ways for solving this problem are possible.
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Damping of the lunar oscillations is possibly due to internal friction from

tides, caused in the body of the moon by the earth.

It should, however, be borne in mind that the forces orienting the dumb-

bell are small, and therefore it is necessary either to use very massive

parts, or a very long rod. The latter is apparently more acceptable, since

in a space flight there are no obstacles for placing such a dumbbell outside

the ship. Building ships in the form

FIGURE 102. Orientation of a sensitive vane ele-

ment in the direction to the center of the sun

Timekeeping in a space flight can be

as well as by electric mechanisms.

of a dumbbell is also possible. Such

a ship will have its Z axis oriented in

the direction of the celestial body.

We note, finally, the possibility of

simulating the direction of the sun by

means of a solar vane. Imagine a

light-weight cone of foil or paper with
an arm which can rotate about axes

perpendicular to the axis of the arm

(Figure 102). Such a device, placed

outside the spaceship, under the

pressure of the sun's light rays will

have the axis of the arm pointing in
the direction of the sun.

Usinga solar vane, itis possible to turn

a spaceship. At Saturn's orbit, the pres-

sure of the solar rays is only 0.001mg/m 2.
If the areaofthe vane is 100m 2 andthe

lengthof the arm is 80 m, a spaceship

weighing 1 ton will be turned in the direc-

tion of the sun in less than 24 hours.

Another by-problem of space

navigation is the problem of autono-

mous time measurement in space flight.

done by means of various spring clocks,

For this purpose, use can also be made

of various atomic clocks, high-stability instruments for time measurement.

In one of these instruments, a high time measurement accuracy is achieved

by a quartz oscillator which is continuously controlled and synchronized with

respect to the resonance frequency of the cesium atom (9, 192, 631, 830cps).
The accuracy of the atomic clock is, in relative units, 10 -9. Such clocks de

deviate in i00 years by only 3 sec. Atomic clocks are heavy: one aircraft

model weighs 27 kg /29/. In addition, the failure of such a complicated

instrument in a prolonged flight is possible.

In contrast to the atomic clock, spring and electric clocks are completely

reliable instruments for time measurement, but for a prolonged flight they
are unsuitable due to the considerable errors which increase with time. It

is possible to correct these clocks by means of radio signals sent from the

earth. However, due to the large distances and to the finite propagation

velocity of radio waves, large errors in this method of timekeeping are

also probable. The problem therefore arises of working out other methods

for keeping and measuring time in interplanetary flights, particularly

autonomous methods. One sufficiently simple, and at the same time com-

paratively accurate method of autonomously measuring time has been
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proposedbyV.P.Seleznev/29/. Like other astronomical methods of time

measurement, this method is based on the periodicity of astronomical

phenomena.

Z

_4

x'

FIGURE 103. Time measurement on a space flight from

the position of the satellite Sa of the planet PI

Let us assume that a satellite Sa of a planet P1 moves along a stationary

orbit with known elements (Figure 103}. The value of the true anomaly 0

of the satellite, measured from some initial direction O'X" determines the

time interval which passed from the moment it passed the direction O'X'.

Thus, time measurement by this method requires knowing the moment of

passage of the satellite through the line O'X' and measuring the angle 9.

The angle _ can be measured by a spaceship only indirectly, i.e., by

measuring its related dihedral angle e, between the planes F_ and F2. by

means of which the directions OX' (it may be a direction of a star} and of

the satellite Sa are found. The function _=f(e) depends on the mutual

positions of the spaceship, planet, satellite, and the orbital plane of the

satellite.

The relation between the angle _ and the time T can be written in the

form:

O = _- (T -- To) + f (T -- To),
p,

where P is the period of revolution of the satellite; To is the moment of

passage of the satellite through the direction O'X'; f(T--T0} is some correc-

tion which is introduced in order to allow for the ellipticity of the satellite's
orbit.

In order to perform the indicated measurements and calculate the time,

it is necessary to know the coordinates of the centers of the satellite and

the planet; their variation with time (the ephemerides of the celestial

bodies}, the ship's coordinates, obtained from the navigational system, the
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moment of passage of the satellite through the direction O'X' or the moment

of passage through the orbit point nearest to the planet, and the position of

the line of apsides of the satellite orbit.

Investigation shows that to increase the accuracy of the time measure-

ment by this method it is necessary to increase the measurement accuracy

of the rotation angle of the radius-vector of the satellite, and to choose a

satellite (of the sun or of a planet) with as short a period of revolution as

possible ]29/.

There are many planetary satellites with short revolution periods; both

satellites of Mars, six satellites of Jupiter (the revolution period of the

sixth satellite is 16.689 days}, seven satellites of Saturn (the revolution

period of the seventh satellite, Hyperion, is 21.28 days), all six satellites

of Uranus, and the first satellite of Neptune, Triton (revolution period 5.88

days).

If an error of 1 " is made in the measurement of the angle _ and the

revolution period of the satellite is 24 hours, then the error in the time

determination is only 0.008 sec. For the same measurement accuracy of

the angle _, when the moon is used for the time measurement (P = 27.32

days), the error in the time determination is 1.86 sec.

The error in the time determination will be even larger ifa planet is used

for this purpose. The mean sidereal revolution of the nearest planet to the

sun, Mercury, is 87.97 days. For such a revolution period and the same

1 " error, in the measurement of the angle _, the error in the time measure-

ment will be more than 6 sec. In view of the fact that an accuracy of 1 " in

the measurement of the angle _, is very high and for the time being is

practically unattainable, the conclusion can be drawn that for the time

measurement by this method it is now possible to use only the near

satellites of planets.

These, briefly, are the main by-problems of space navigation and the

possible methods of their solution.
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